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Abstract
Explicit parameterization of subdivision surfaces for texture mapping adds significant cost and complexity to film
production. Most parameterization methods currently in use require setup effort, and none are completely general.
We propose a new texture mapping method for Catmull-Clark subdivision surfaces that requires no explicit param-
eterization. Our method, Ptex, stores a separate texture per quad face of the subdivision control mesh, along with
a novel per-face adjacency map, in a single texture file per surface. Ptex uses the adjacency data to perform seam-
less anisotropic filtering of multi-resolution textures across surfaces of arbitrary topology. Just as importantly,
Ptex requires no manual setup and scales to models of arbitrary mesh complexity and texture detail.
Ptex has been successfully used to texture all of the models in an animated theatrical short and is currently
being applied to an entire animated feature. Ptex has eliminated UV assignment from our studio and significantly
increased the efficiency of our pipeline.

1. Introduction

Texture mapping is the cornerstone of our studio’s rendering
pipeline. We use Catmull-Clark subdivision surfaces [CC78]
for the vast majority of our models, and we often apply
dozens of texture map layers on each surface. These maps
define surface color and texture, coarse and fine displace-
ments, specular intensity, roughness, anisotropic lighting di-
rection, masks to blend between different looks across a sur-
face, and many additional attributes.

The painterly look that art directors on our films typi-
cally demand can only be achieved with hand-painted tex-
tures. When we do use a procedural texture, it is often just
a base coat for painting, and we always precompute it and
store it in a texture map – we prefer the filter quality of tex-
ture maps because procedural textures are notoriously hard
to anti-alias in the shader [AG99]. We also cache rendered
attributes such as ambient occlusion in texture maps for ren-
dering efficiency. Thus we require that all models be map-
pable in our pipeline.

Previous texture mapping methods for subdivision sur-
faces were inefficient, lacked generality, and often required
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painstaking manual setup. We tried various atlas and vol-
umetric methods which promised to be more general and
efficient, but could not get acceptable filtering results. Be-
fore subdivision surfaces, NURBS patches were our mod-
eling standard and texture mapping was trivial due to their
intrinsic 2D parameterization; we sought to bring the same
simplicity of texturing to subdivision surfaces.

We desired a new method that was:

• Film-quality. The method must provide anisotropic filter-
ing, no visible spatial or temporal aliasing, smooth filter-
ing for displacement maps, and no visible seams.

• General. The method must work on any geometric model
in our pipeline, regardless of topology or complexity.

• Efficient. The method must be cost-effective in storage,
I/O, memory, and CPU usage.

• Setup-free. The method must allow models to be texture
mapped without any special preparation.

Our new method, Ptex, meets these goals by mapping tex-
tures using the intrinsic per-face parameterization of the sub-
division mesh. There is an elegance and efficiency in using
the intrinsic parameterization, and this by itself is not a new
idea [LMH00], but film-quality filtering of per-face textures
has not been previously addressed.

A key benefit of using the intrinsic parameterization is
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Figure 1: T. Rex with 2694 faces rendered with Ptex. No explicit UV assignment was used. The largest texture layer, the fine-
scale displacements, has 836 million texels stored in a single Ptex file with individual face resolutions ranging from 64×64 to
2048×2048 texels. No seams are visible across faces, even under close magnification. ( c© Walt Disney Animation Studios)

the freedom from having to assign UVs before painting. As-
signing UVs traditionally has been the responsibility of the
Look Development department which creates the textures
and shaders that define the look of the models. Because of
tight production schedules, Look Development happens in
parallel with other departments which means that many de-
partments only have access to unparameterized models. And
even if UVs were assigned when the models were created,
the Look Development department may reparameterize a
model at any time if the current UVs do not allow for ad-
equate resolution, and this would invalidate all existing tex-
tures including those textures created in other departments.
For these reasons, most departments have not previously had
access to texture maps.

With Ptex, this is no longer the case as shown in Figure 2.
Modelers can now sculpt displacement maps, layout artists
can sketch in rough features, animators can create attribute
maps to control deformations, etc., before a model reaches
the Look Development department and without fear of the
textures being later invalidated. This has also eliminated one
of the more tedious tasks of texture mapping – creating an
explicit parameterization – along with the overhead and has-
sle that comes with it such as passing the parameterization
data down the pipeline, reparameterizing after model revi-
sions, etc.

Adopting the intentionally trivial per-face parameteriza-
tion was far from a trivial task. A custom file format, cache,
and filtering engine needed to be built and integrated with a
commercial renderer. We encountered and solved a number
of research problems related to filtering across face bound-
aries, filtering with very large filter widths, and anisotropic
filtering.

In this paper we present our original contributions: (1)
data structures and methods for efficiently storing and ac-
cessing face adjacency data in the texture map; (2) a method
for seamless, anisotropic filtering over the multi-resolution
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Figure 2: Before Ptex, only departments downstream from
Look Development could use textures. With Ptex, any depart-
ment can use textures.

per-face textures using the stored adjacency information; and
(3) a method for blending data across faces of an arbitrary
mesh to handle filtering when the individual faces are sub-
pixel in the final image. In addition, we offer details of our
working implementation, provide an analysis of our filtering
choices, and show production results.

2. Previous texture mapping methods

We evaluate previous methods according to our list of re-
quirements above (Film Quality, General, Efficient, and
Setup-free), with the results summarized in Table 3.

Pelting. A common method for simple objects is to cut
the mesh to make it topologically disk-like and map it to a
single connected region of the plane, often referred to as a

c© 2008 The Author(s)
Journal compilation c© 2008 The Eurographics Association and Blackwell Publishing Ltd.



B. Burley & D. Lacewell / Ptex: Per-Face Texture Mapping for Production Rendering

Film-

quality
General Efficient

Setup-

Free

Pelting

Atlas methods

Projection

Volumetric textures

Prior per-face methods

Ptex

maybe maybe

maybe maybe

Figure 3: Evaluation of methods according to our require-
ments

pelt. These mappings can be applied to a subdivision con-
trol mesh [DKT98], but seams and distortion are problems.
Seam artifacts can be hidden by painting and blending be-
tween overlapping maps [PB00], or can be obscured by plac-
ing seams in areas of high curvature or occlusion [SH02],
but neither of these generalize to arbitrarily complex meshes.
Distortion, caused by flattening curved surfaces to the plane,
can be reduced by making more cuts, and can be minimized
using a solver. Nonlinear solvers can produce optimal re-
sults [HG00]; linear solvers are faster [DMA02], but have
higher distortion because they only optimize area locally,
and can still be slow when solving an N ×N linear system
for N vertices (we have seen meshes with 400,000 vertices
in production).

Atlas methods. Some methods generalize planar map-
ping to models of higher complexity by splitting the mesh
into multiple disjoint pieces, or charts, which map to sepa-
rate regions of the plane [MYV93,LPRM02], and pack those
pieces into a shared texture referred to as an atlas. The map-
ping step is easier for atlases because charts have relatively
few faces and low Gaussian curvature. However, packing ef-
ficiently can be difficult. Also, charts that are adjacent in the
atlas may not be adjacent on the model which creates fil-
tering challenges. Purnomo et al. [PCK04] hide seams by
storing a small gutter around each chart at every mipmap
level, and adjust the texture coordinates so that a trilinear fil-
ter never spans a gutter, but trilinear filtering is not sufficient
quality for production.

Projection. Projection mapping [AG99] does not require
assigned UVs; texture values are looked up with a projec-
tion onto a plane or other parametric surface. Projection
mapping is in fact the primary texture mapping method at
some studios. A depth map is used to prevent texture values
from projecting onto occluded geometry. Complex geom-
etry can be problematic though, requiring multiple projec-
tions for coverage, possibly with manual blending between
the projections, and there can be depth bias artifacts. Texture
lookups are also expensive, requiring multiple perspective
matrix transforms plus depth map and color map lookups
per shading point.

Volumetric textures. Texture values can be stored in a

volumetric data structure such as an octree or a brick map
[BD02, DGPR02, CB04]. Volumetric textures do not require
assigned texture coordinates and thus do not have any setup
costs. However, storage and lookup are less efficient than for
2d textures. There are also filtering issues because filtering
takes place in 3d rather than on a surface. Colors can bleed
through nearby surfaces with similar normals, so such sur-
faces must be assigned separate maps. Only trilinear filtering
has been described in the literature and adjacent voxels with
differing resolutions also present filtering challenges.

Prior per-face methods. Some methods store textures
per-face on a simplified mesh. Lee et al. [LMH00] simplify
a Loop subdivision surface to one of equivalent topology,
and use per-face displacement maps to recover the original
surface. They also store arbitrary attributes such as color in
the per-face textures and use the Loop subdivision rules to
interpolate the values. PolyCube maps [THCM04] store tex-
tures on the faces of a set of connected cubes which roughly
approximate the base mesh, but are not practical for com-
plex meshes. TileTrees [LD07] store textures on the faces
of cubes organized in an octree and support more general
geometry than PolyCubes. None of these methods however
provide production-quality filtering; notably, no anisotropic
filtering is provided.

In summary, only two of these methods, pelting and pro-
jection, meet our filtering requirements, but neither of these
is general, and projection is particularly inefficient. Prior to
Ptex, most of our models were broken into small pieces that
could be separately mapped using standard methods, but this
came at significant cost in complexity and system resources.

3. Overview

Ptex stores a separate texture per face of the subdivision con-
trol mesh, each of which can be independently sized, and any
surface can be mapped with a single Ptex file containing all
of the per-face textures regardless of mesh complexity. The
Ptex file also contains mesh adjacency data that is used to
filter across faces. Seamless filtering is particularly critical
to avoid lighting artifacts when using displacement maps.

In the following sections, we describe our per-face param-
eterization and how to compactly store adjacency data in the
texture file; we describe how to size and store per-face tex-
tures efficiently; we present our method for filtering per-face
textures in a production renderer; we provide production re-
sults; and we discuss our implementation choices.

4. Per-face parameterization

The input to our algorithm is an arbitrary quad mesh which is
completely and uniquely parameterized using the coordinate
〈 f aceid,u,v〉where faceid is implied by the position of each
face in the mesh description, u and v are the intrinsic subd
parameters, and the UV orientation is defined by the vertex
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(a) (b)

Figure 4: a) Portion of a control mesh showing intrinsic
faceids and edgeids. b) Corresponding limit surface showing
continuous isolines across faces.

ordering (assumed to be 〈0,0〉,〈1,0〉,〈1,1〉,〈0,1〉). While
f aceid is obviously discontinuous, the parameterization is
still C2 continuous across faces on the Catmull-Clark limit
surface once orientation has been taken into account. For ex-
ample, in the mesh in Figure 4, ∂P/∂u on face 12 aligns with
∂P/∂v on face 8.

The four edgeids of each quad face are numbered 0 to 3
and follow the vertex ordering. Adjacency data needed for
filtering is stored as an array of the four adjacent faceids
and edgeids per face. A faceid of -1 indicates that the edge
is on a mesh boundary. For instance, face 7 shown in Fig-
ure 4 would have adjacency data {adjfaces:〈−1,8,17,−1〉;
adjedges:〈x,3,0,x〉, x =don’t care}.

To account for the difference in orientation between
neighboring faces, the number of 90 degree rotation steps
from face i to face j can be computed from the edgeids
for the shared edge (assuming consistent winding order) as
r = (ei − e j + 2) mod 4 and the valence of a vertex can be
determined by simple traversal.

With 32 bits allocated to each faceid and 2 bits allocated
to each edgeid, the storage cost of the adjacency data is only
17 bytes per face. This data is further compressed in the file
along with all of the other header data.

5. Texture sizing and storage

Even though no explicit parameterization step is needed, the
textures still need to be sized efficiently as shown in Fig-
ure 5. We sample the surface derivatives over each face f
to find the minimum texel density in u and v (which oc-
curs at the maximal point of the surface derivative) and
compute per-face scale factors su( f ) = 1/(max∂P/∂u) and
sv( f ) = 1/(max∂P/∂v). We are careful to avoid sampling
near the singularity at extraordinary vertices. The scale fac-
tors are computed whenever a model is loaded into our 3d
paint system. Users can then adjust the global texel density
ρ (given in texels per object-space unit) and each face will be
allocated a texture with resolution ρsu( f )×ρsv( f ) increased
to the nearest power of two. Additionally, users have full lo-
cal control of the resolution of each face, a capability not
present in most texture mapping systems. For instance, users

Figure 5: Mesh with 212,356 faces mapped with a single
Ptex file. a) Ambient occlusion map. b) Detail image showing
individual faces color-coded and mapped with 4× 4 texels
per face; solid-colored regions are texels. c) Face resolutions
allocated based on surface derivatives, showing much better
coverage using the same 3.4 million texel budget.

can increase the resolution on just those faces for which the
camera is expected to zoom in close.

As in most texture systems, we store box-filtered sym-
metric reductions of each texture, i.e. mipmaps, in the Ptex
file. However, rather than store a separate image pyramid for
each texture, we store full sets of face textures in resolution
layers. The first layer has the full-res textures, the next layer
has all the once-reduced textures, and so on. Each texture
within a layer is still stored in its own directly-accessible
block. The resolution layers merely serve to improve local-
ity of disk access.

We also use asymmetric reductions for anisotropic filter-
ing; without them, the texture footprint of the filter could
grow arbitrarily large in one direction in texture space
and significantly degrade performance. Other systems store
asymmetric reductions in the texture file [Pea90], but this is
typically not used in practice due to the high storage cost; a
full set of asymmetric reductions increases file size by 300%
versus 33 1

3 % for symmetric reductions. To avoid the storage
and I/O cost, Ptex generates asymmetric reductions dynami-
cally from the nearest available resolution, a feature we have
not seen in other systems.

In addition to the mipmaps, we store a single data block
containing the average values of the textures, one value per
face. For faces which are constant, a common occurrence in
many production textures, this is the only storage required
(i.e. no mipmaps are needed). Also, for distant objects that
project to a small region of the image plane, this is the only
data block that needs to be read from the file for any face,
constant or not, which provides a significant reduction in file
I/O. Further, if all faces intersecting the filter kernel are con-
stant then no filtering calculation is needed.

6. Filtering

In this section we present our method for anisotropic multi-
resolution filtering of per-face textures. We support both
magnification and minification in a unified framework. Our
method is designed to work well with Pixar’s Photorealis-
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Figure 6: Quad subdivision face diced along u and v
isoparametric lines into grids with roughly pixel-sized mi-
cropolygons. The micropolygon size, du× dv, is constant
over each grid.

tic Renderman (PRMan), but should be adaptable to any
production-quality renderer.

6.1. General case

In a REYES renderer [CCC87] such as PRMan, texture maps
are sampled at shading points as shown in Figure 6. The
renderer dices geometric primitives into rectangular shading
grids, and communicates the grid spacing to the shader via
the built-in variables du and dv. Because Catmull-Clark sur-
faces are diced face-by-face along parametric lines, per-face
textures are aligned with the shading grids and the filter re-
gion is simply a rectangle of size du× dv. This allows fully
anisotropic filtering to be achieved with a separable filter.
Any filter kernel could be used with our method, but sepa-
rable filters are more computationally efficient than radial or
elliptical filters [Hec89].

To achieve our filter quality requirements, we use a bicu-
bic filter kernel:

k(x) =
1
6



(3+6S)|x|3+ if |x|< 1
(−6−9S)|x|2 +(4+2S),
(−1−2S)|x|3 +(6+9S)|x|2+ if 1 ≤ |x|< 2
(−12−12S)|x|+(8+4S)
0 otherwise

(1)

The parameter S is exposed to the user as a sharpness con-
trol. For displacement maps, we use S = 0 which produces
the C2 cubic B-spline. For color maps, the B-spline appears
blurry; a sharper value is needed. The value S = 1 (our pro-
duction default for color maps) produces the much sharper
Catmull-Rom interpolating spline, but a continuum of values
from 0 to 1 may be used; the value of S = 2/3 for instance
produces the popular Mitchell filter [MN88]. Kernels with
S 6= 0 are C1 which is sufficient for most maps.

For a given filter region of size du× dv, we choose the
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Figure 7: A 6×6 kernel overlapping a corner of the face. a)
In the regular case, the kernel is applied piecewise to each
overlapped face for a seamless result. b) Beyond the mesh
boundary, kernel weights are applied to the adjacent edge
texels. c) When an adjacent face has insufficient resolution,
each kernel weight is applied to the nearest available texel.
d) Near an extraordinary vertex, it is less clear how to apply
the rectangular kernel.

texture resolution, Ru ×Rv, that has texels just smaller than
the filter size:

Ru = 2dlog2
1

due; Rv = 2dlog2
1
dve (2)

The kernel weights are:

ki j(u,v) = k

(
u− (i− 1

2 )/Ru

du

)
k

(
v− ( j− 1

2 )/Rv

dv

)
(3)

and the filter convolution with texel data values di j is:

f (u,v) =
∑i ∑ j ki j(u,v)di j

∑i ∑ j ki j(u,v)
(4)

We clamp the resolution against the highest available res-
olution for the current face’s texture. The filter width thus
varies between 1.0 and 2.0 texels and the bicubic kernel
(which has a support width of 4) will require between 4 and 8
samples in each direction. When the filter kernel is clamped
to the highest resolution, it acts as a magnifying filter and is
equivalent to cubic spline interpolation.

When the kernel extends beyond an edge of the face, we
split the kernel and convolve it piecewise with each over-
lapped face as shown in Figure 7a. If the kernel overlaps
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(b)

(a)

Figure 8: Two adjacent faces displaced with textures of
different resolution, shown in 1d cross-section. a) Border
clamping produces a discontinuity, and also bends the re-
constructed normals toward the undisplaced surface. b) Fil-
tering across edges reduces the discontinuity, but more im-
portantly, unbends the normals.

a boundary, we apply the kernel weights from beyond the
boundary to the adjacent edge texels, shown in 7b. This is
commonly referred to as border clamping.

If a neighboring face has insufficient resolution, or if the
kernel overlaps an extraordinary vertex, i.e. of valence N 6=
4, then we use special methods described in the following
subsections.

6.2. Resolution mismatch

When an adjacent face has insufficient texture resolution for
the current filter size, the texels do not line up with the ker-
nel weights. In this case we apply each kernel weight to
the nearest available texel as shown in Figure 7c. Border
clamping could be used (as is typically done with NURBS
patches), but when used with displacement mapping, this
causes the displaced normals to bend towards the undis-
placed surface, as illustrated in Figure 8a, and can introduce
significant lighting artifacts. Filtering across the edge pro-
duces more consistent normals as shown in Figure 8b, and
typically produces a smaller discontinuity. The discontinuity
itself, though, is not a problem, because PRMan will auto-
matically stitch the grids back together by adding microp-
olygons to fill the gap.

It is worth noting that the resolution mismatch only oc-
curs under magnification – a rare occurrence in production
because artists always try to create textures with more than
enough resolution – and only causes visible artifacts with
large, smooth displacements. For a modest amount of mag-
nification, the grid spacing will be close to the texel spacing
and the method described here is sufficient to hide any possi-
ble seam artifacts; the discontinuity will in fact be no larger

Figure 9: Mesh with 32× 32 constant colored faces ren-
dered at resolutions ranging from 256× 256 to 8× 8 pixels
without face blending (a) and with face blending (b). To re-
veal the aliasing, the pixel filter was turned off by using a
box filter with 1 pixel sample. For comparison, the lowest-
res images from (a) and (b) were re-rendered in (c) and (d)
using a Gaussian pixel filter with 5× 5 and 9× 9 samples.
At 5× 5 samples, a common production setting, aliasing is
reduced but still visible (c, left). At 9×9, the spatial aliasing
is gone, but a bias is still visible that would likely result in
flickering during animation (c, right).

than that caused by transitions between prefilter resolutions,
an issue further discussed in Section 8. If high magnification
is important, artifacts can be completely avoided simply by
creating all of the per-face textures with the same resolution.

6.3. Extraordinary vertices

The method of splitting the kernel into as many as four
pieces, as described above, works well near regular vertices.
It is less clear how to extend the rectangular kernel across an
extraordinary vertex (EV) such as the one in Figure 7d.

To form a smooth reconstruction near EVs, a Catmull-
Clark surface could be formed from texels in a manner sim-
ilar to [LMH00]. In addition to the computational cost and
complexity, the biggest problem with this approach is that
it does not support anisotropic minification. Fortunately, in
almost all practical cases, the Catmull-Clark reconstruction
is unnecessary.

Under minification or slight magnification, the area
around the EV is subpixel and smooth reconstruction is not
important. We simply ignore the corner faces and renormal-
ize the kernel. This creates discontinuities along edges near
the EV but produces negligible artifacts. Under significant
magnification of large, smooth displacements, seam artifacts
may be visible. In this case the Catmull-Clark reconstruction
can still be used, but this has not yet been necessary in prac-
tice.

6.4. Large filter widths

When a face is rendered smaller than a pixel, PRMan will
only sample the corners of each face and the filter widths, du
and dv, will increase beyond 1.0 (i.e. larger than the face).
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Figure 10: Surface rendered with color and displacement maps under minification using control mesh shown in upper left. The
top images show artifacts that can occur with other methods: (a) isotropic filtering results in undesirable blur; (b) bicubic
filtering using S = 1 kernel shows aliasing with fine displacements (bilinear is much worse); (c) clamping kernel at face
boundaries reveals seams with large, smooth displacements. The bottom images show (a) our anisotropic filtering, (b) S = 0
kernel, and (c) seamless filtering across edges.

Further, when many faces are subpixel, the renderer may
undersample the surface (because only 1 micropolygon per
pixel sample is used) and aliasing can occur.

To handle filter widths larger than 1.0, a special prefilter-
ing method is used where the 1× 1 texel per-face textures
are repeatedly blended by box-filtering with their immedi-
ate neighbors. Convolving a box filter n times generates a
B-spline of order n and has an effective filter width propor-
tional to sqrt(n) [Hec89]. A 3 unit box filter convolved n
times has an effective filter width of approximately 3

2 sqrt(n).
The processing cost is modest as only the 1×1 per-face tex-
tures are used, and the filtered values can be computed once
and cached. Results are shown in Figure 9.

7. Results

Figure 10 demonstrates that our method meets our stated fil-
ter quality requirements. Our anisotropic filtering produces
high-quality minification of color and displacement maps
and has good preservation of detail. Our S = 0 kernel fil-
ters displacement maps without visible aliasing. And filter-
ing across face boundaries produces seamless results even
for large, smooth displacements, and even in the presence of
several EVs of valence 3 and 5.

Our latest feature film, “Bolt,” is about 60% complete
through Look Development and has thus far painted more
than 80,000 subdivision surfaces with Ptex, using an average
of 7 texture layers per surface, and 2.3 mega-texels per Ptex

file. The largest Ptex file has more than 3.3 giga-texels, a
resolution unachievable with traditional texture files. A final
production frame is shown in Figure 12. A theatrical short,
“Glago’s Guest,” has also been completed using Ptex to tex-
ture all of the models, several of which are shown in Fig-
ure 13.

Production efficiency gains have been significant. The re-
moval of UV processing has streamlined our pipeline and
improved artist efficiency, and there have been I/O perfor-
mance gains as well. Our current production’s upgraded ren-
der farm has 4 times the rendering capacity of the previous
production, and texture usage per render has increased sub-
stantially. Despite the increased demand, Ptex has actually
decreased the load on the texture I/O servers, which were
running near capacity on the previous production, and al-
lowed us to avoid an expensive upgrade.

We attribute the reduction in I/O demand largely to the
fact that Ptex only requires one file per surface, versus hun-
dreds with previous methods, but the other optimizations we
have described likely contribute as well. CPU times are also
competitive with and often faster than our previous texture
methods.

Feedback from artists has been extremely positive. Artists
report that models that would have been very difficult to
paint with previous methods are easy with Ptex, and levels of
visual complexity are possible that were previously unattain-
able.
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Figure 11: Frequency response of various filters.

8. Discussion

What about non-quad meshes? We already had a quad-
only restriction in our pipeline and do not consider it a sig-
nificant modeling burden. That said, we believe extending
Ptex to support embedded non-quads should be straightfor-
ward; PRMan already subdivides non-quads into quads be-
fore dicing into grids, so for non-quad faces we would just
assign one texture per sub-face. We would need to extend our
adjacency structure and filtering algorithms to handle the in-
troduced “T” intersections between the subfaces of the non-
quads and adjacent quads, but the basic ideas should still
apply. In the future we would also like to extend Ptex to tri-
angle meshes for Loop subdivision.

Should the filter area be based on the screen pixels
rather than the shading grid? A circular image of a pixel
has an elliptical pre-image in texture space and thus the ideal
filter region is generally considered to be an arbitrary el-
lipse [Hec89], but this cannot be determined from the undis-
placed surface and thus is not applicable to displacement
mapping. In PRMan, it is common practice to use the pre-
image of the micropolygon (rather than the final pixel) as the
filter region [AG99]. If a subpixel shading rate is used and
undersampling by the pixel filter is a concern, then alias-
ing can still be reduced by simply scaling the filter size
by (1/

√
shadingRate) to keep the filter area approximately

pixel-sized.

Why not use a higher-order filter for prefiltering
and simple bilinear interpolation for reconstruction (as
in [PCK04])? The box filter has the least attenuation of the
non-sharpening filters typically used in practice as shown in
Figure 11. Gaussian, by comparison, attenuates significantly
more detail near the filter frequency and is undesirably soft.
The Gaussian filter must also be properly windowed and
given adequate support or it will have significant aliasing
in addition to appearing blurry. A sharpening filter such as

Catmull-Rom may have a better low-pass response than box,
but could create ringing artifacts that get magnified during
reconstruction. Spatial aliasing can occur with a box filter,
but is minimized because the filter is always texel-aligned as
a 4 : 1 or 2 : 1 reduction. Note that temporal aliasing, which
is far more noticeable than spatial aliasing, is not an issue
because the prefilter is temporally invariant.

For reconstruction, we have shown in Figure 10 that even
using a bicubic filter can produce visible aliasing for dis-
placement maps. A more primitive filter like bilinear per-
forms significantly worse, and simply coupling it with a
higher-order prefilter would not eliminate the aliasing.

What are the implications of allowing the filter width
to vary continuously vs. using a fixed 4× 4 kernel as is
normally used with bicubic splines? A fixed 4× 4 kernel
provides a continuous reconstruction within a mipmap level,
but when the filter switches resolutions there can be a visible
discontinuity. Linear interpolation, or "lerping", between the
two nearest mipmap levels is commonly used to eliminate
the discontinuity, but the price paid is two-fold. First, detail
is lost because the lower-res mipmap level is blended into
the result. Second, lerping increases the filter cost, especially
when used with anisotropic prefiltering where lerping must
be done in both the u and v directions – 64 kernel samples
are required, 16 each from 4 separate texture resolutions.

In contrast, with our variable-width kernel and anisotropic
prefiltering, the mipmap discontinuity is reduced to the point
of being unnoticeable, and lerping is not needed. The cost
is also reasonable: on average, 30.25 kernel samples are
needed, and only a single texture resolution is required for
any given shading point. Like the fixed kernel, our variable-
width kernel provides a continuous reconstruction within a
mipmap level, given that k(x) is continuous and the filter
width varies continuously. The fact that the grid spacing
changes abruptly from grid to grid is not a problem thanks to
PRMan’s smooth derivatives feature; PRMan filters the du
and dv values to make them continuous across the surface
before passing them to the shader.

There is one theoretical quality advantage to the fixed-
width kernel; Mitchell [MN88] recognized that for separa-
ble cubic filters, sample-frequency ripple (noise with a pe-
riod equal to the sample spacing) can be reduced to zero by
using a kernel with a fixed width of four. When the kernel
width is allowed to vary, the kernel must be normalized to
keep the volume equal to 1.0 and achieve a good flat-field
response (the ability to reconstruct a constant function), and
normalization introduces ripple.

For our variable-width kernel, we tried normalizing our
bicubic filter kernel using the analytic volume integral, but
this resulted in significant sample-frequency ripple and poor
flat-field response for non-integral filter widths. Instead,
we found that normalizing the kernel weights discretely
as shown in Equation 4 drastically reduced the sample-
frequency ripple and achieved perfect flat-field response.
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The ripple that remains is proportional to the data slope. We
calculated a peak error of 0.43% of the data slope at a filter
width of 1.61 for our S = 0 kernel (the ripple is somewhat
larger for other values of S). This is visibly insignificant and
smaller than the ripple in PRMan’s smoothest native filter,
“radial-bspline”.

9. Conclusion

We have presented a novel texture mapping method for
Catmull-Clark subdivision surfaces using the intrinsic per-
face parameterization of the control mesh. We have shown
how to efficiently store and access face adjacency data in
the texture map and use that data to seamlessly filter across
faces.

We have demonstrated that our method, Ptex, meets our
stated requirements:

• Ptex is film-quality, providing seamless, anisotropic filter-
ing of texture maps including smooth displacement maps.

• Ptex is general, scaling to models of arbitrary complex-
ity and textures of arbitrary resolution, allowing levels of
detail that were previously unattainable. By keeping the
texture grid aligned with the shading grid, Ptex preserves
detail better than previous methods.

• Ptex is efficient, providing independent per-face control
over texture resolution, and requiring only one file per
surface, reducing memory and I/O requirements signifi-
cantly.

• Ptex is setup-free, requiring no UV assignment or other
pre-processing, and thus allowing access to texture maps
in every department of our studio.

We analyzed our filtering choices, gave details of our
working implementation, and showed that our approach re-
sults in significant efficiency gains for production. Ptex has
been fully and successfully deployed across our entire fea-
ture animation studio.
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Figure 12: A final production still from “Bolt” using Ptex for all models. ( c© Walt Disney Animation Studios)

Figure 13: Production models from “Glago’s Guest,” painted and rendered with Ptex. Full-res turntables included in accom-
panying video. ( c© Walt Disney Animation Studios)
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