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Figure 1: Production examples from Toy Story 4 (left), Ralph Breaks the Internet (middle) and Bumblebee (right). In each case
we show the clean image (upper-left) our denoiser produces from a noisy render (lower-right).

ABSTRACT
We present our experience deploying and using machine learning
denoising of Monte Carlo renders in the production of animated
feature films such as Pixar’s Toy Story 4, Disney Animation’s Ralph
Breaks the Internet and Industrial Light & Magic’s visual effects
work on photo-realistic films such as Aladdin (2019). We show
what it took to move from an R&D implementation of "Denoising
with Kernel Prediction and Asymmetric Loss Functions" [Vogels
et al. 2018] to a practical tool in a production pipeline.
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1 INTRODUCTION
Path-traced Monte Carlo rendering is now ubiquitous in feature
animation and visual effects production [Keller et al. 2015]. Its
random sampling of light paths causes visible noise in the final
image unless the render is given a long time to converge. A common
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solution to this problem is to perform image-space denoising after
the render completes.

Our three studios in collaboration with Disney Research Studios
recently put machine learning denoising into production (Figure 1)
and found it a significant improvement over past hand-designed
linear regression denoisers. We discuss what we learned when
implementing the approach of Vogels et al. [2018] as a practical
production tool used on animated feature film such as Pixar’s Toy
Story 4, Disney Animation’s Ralph Breaks the Internet and Industrial
Light & Magic’s visual effects work on photo-realistic films such as
Aladdin (2019). Our three production studios represent a variety of
visual appearance, renderers, and production processes.

2 DENOISING APPROACH
Our denoiser follows the general approach of Vogels et al. [2018].
The neural network architecture has been modified further to speed
up denoising.

Temporal Denoising: The denoiser reads a temporal region of seven
frames, letting it denoise more effectively and improving temporal
stability. At the start or end of a sequence of frames the denoiser
supplies black imagery and features for the missing frames. During
training some images were randomly replaced with black, so the
network learned to tolerate missing images.

Inputs to the Denoiser: The input to training and to denoising is
images rendered by Disney’s Hyperion Renderer [Burley et al. 2018]
or RenderMan. These include specular and diffuse decomposition of
the rendered color, alpha (opacity), surface color and surface normal
direction features, variance estimates of all of those, and motion
vectors. Pixar has a layer of configurability on top of RenderMan
that allows additional separation of the illumination. For example,
some image content benefits from filtering subsurface in its own
buffer.

Motion Vectors: The denoiser warps frames to match the center
frame’s pixel positions as guided by motion vectors. Pixar gener-
ates motion vectors using optical flow, which can track the motion
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of volumetric data and can capture motion behind glass – advan-
tages over rendered motion vectors. Pixar’s networks were trained
with optical flow motion vectors; those networks do not generalize
well for denoising with motion vectors output from RenderMan -
particularly on content that is already challenging, like hair.

Denoising passes: The denoiser separately denoises 1. the render’s
surface color output; 2. diffuse divided by rendered surface color;
and 3. specular. Then it multiplies denoised diffuse by denoised
albedo and adds the result to specular to get the final denoised color.
Alpha is optionally denoised in an additional pass.

Training: The neural network is trained on thousands of 7-frame
sequences of frames from multiple renderers, productions, and
studios. For each frame we give it a nearly noise-free reference
render and a set of noisy renders with different numbers of samples
per pixel, and consequently different noise levels. We find that
the network generalizes well without retraining for a particular
production. Disney used the denoiser extensively on Ralph Breaks
the Internet without training on any of that show’s imagery.

Alpha Denoising: The denoiser let us reduce the number of samples
per pixel for color so much that certain content will have an unac-
ceptably noisy alpha (since alpha comes from the same samples as
color). For example, vegetation with nothing behind it in-render
will composite poorly due to unresolved alpha. So we sometimes
also denoise alpha. Neural networks trained only on color data have
not generalized perfectly to alpha. For example, a color network
may produce values of 0.9999 for a solid alpha input, which can
create “pinhole” bright spots during compositing. Pixar solved this
by retraining the denoiser specifically on alpha examples.

3 DEPLOYMENT AND PIPELINE
INTEGRATION

Stand-alone versus Nuke Plug-in Denoising: Disney and ILM de-
noise in a stand-alone Python application. Pixar re-implemented
denoising as a C++ Nuke plug-in, hoping that would give more
compositing flexibility, though this increased its memory use.

CPU versus GPU denoising: The denoiser can run its neural net-
works on the CPU or GPU. The GPU version runs faster, but neither
Disney’s, Pixar’s nor ILM’s render farms have sufficient access to
GPUs so we currently run on CPU.

Pipeline & Render Queue Tools: The studios have extended existing
pipeline and queue tools to denoise a frame as soon as its 7-frame
neighborhood of frames has completed rendering. The prior de-
noiser used a 3-frame neighborhood.

4 IMPACT ON PRODUCTION
Effectiveness: This denoiser produces few artifacts and reduces
noise much better than Disney’s previous denoiser [described in
Burley et al. 2018, section 5.1.2], which was state-of-the-art before
machine learning denoisers were developed. This not only saves
computation time, but also allows artists to go through more cre-
ative iteration cycles. Disney quickly adopted the new denoiser, in
the middle production of Disney’s Ralph Breaks the Internet. Due
to its later release date, Toy Story 4 had more time to plan for the

adoption of the new denoiser, which afforded them more flexibil-
ity in render farm projections and show rendering needs. At ILM,
the denoiser was deployed in time to help facilitate the delivery
of Aquaman and has been used to throughout the production of
Aladdin (2019) and other shows.

Detail Preservation andOver-resolution: ILM’s highly detailed photo-
realistic renders present a challenge for detail preservation. The
new denoiser is the first denoiser to perform well enough to be
adopted for production use at ILM. Over-smoothing can still occur
when denoising renders with high frequency detail, however. ILM
sometimes renders with significantly fewer samples per pixel but at
a higher resolution, then denoises, and then down-scales the result,
which often leads to less loss of detail.

Artist Control of Denoising Strength: Vogels et al. [2018] introduced
denoiser training using “asymmetric loss functions”. ILM uses this
feature heavily for per-pixel control of the intensity of denois-
ing. Artists can adjust the value of this parameter to avoid over-
smoothing in cases where detail retention is important, e.g. for
close-up character shots. We can also adjust the denoising intensity
based on the amount of motion blur.

Render Time Savings: The new denoiser reduced render times at
Disney and Pixar by a factor of 2 to 4 compared to their prior
denoisers and even more compared to not denoising. Production
generally took some of the improvement as reduced render time
and some as improved visual quality. At ILM the denoiser reduced
worst render times by a factor of 2 to 3 compared to not denoising,
as well as reducing the burden on the digital compositors to clean
up noise and fireflies manually.
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