Optimizing Rig Manipulation with GPU and Parallel Evaluation

Walter Yoder
Walt Disney
Animation Studios

John Kahwaty
Walt Disney
Animation Studios

Andy Lin
Walt Disney
Animation Studios

David Suroviec
Walt Disney
Animation Studios

Gene S. Lee
Walt Disney
Animation Studios

Frames Per Second

Optimized VS Original Rig Evaluation Speed

riginal Rig M Optimized Rig

w N

Skincluster Evaluation Speeds

— @ 0G @ EMP GPU

AN

Frames Per Second

MP GPU Mesh Size (Vertex Count)

Fig 1: Example Production Rig
ABSTRACT

Rig speed plays a critical role in animation pipelines. Real-time
performance provides instant feedback to artists, thereby allowing
quick iterations and ultimately leading to better quality animation.
A complete approach to real-time performance requires both play-
back and manipulation at interactive speeds. A pose-based caching
system (PBCS) addresses the former, but the manipulation of com-
plex rigs remains slow. This paper speeds up rig manipulation by
taking advantage of modern multi-core architectures and the GPU,
and by constructing rigs that evaluate efficiently on parallel process-
ing hardware. This complete approach, including tool updates and
rig optimizations, was used successfully to significantly improve
interactive rig manipulation performance on Frozen 2.

CCS CONCEPTS

« Computer systems organization — Real-time systems; Real-
time system specification.

KEYWORDS
Real-Time Interaction, GPU, Parallel Evaluation, Pose-Based Caching

ACM Reference Format:

John Kahwaty, Walter Yoder, Andy Lin, Gene S. Lee, and David Suroviec.
2019. Optimizing Rig Manipulation with GPU and Parallel Evaluation. In
Proceedings of SIGGRAPH 19 Talks. ACM, New York, NY, USA, 2 pages.
https://doi.org/10.1145/3306307.3328181

1 INTRODUCTION

In key-framed animation, animators manipulate hundreds of rig
controls while reviewing the motions repeatedly. The speed at
which animators perform these tasks influences their ability to

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

SIGGRAPH 19 Talks, July 28 - Aug 01, 2019, Los Angeles, CA, USA

© 2019 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-6317-4/19/07.

https://doi.org/10.1145/3306307.3328181

Fig 2: Rig Performance in DG/EMP/GPU

Fig 3: Scalability with DG/EMP/GPU

iterate and ultimately create high quality animation. PBCS [Lin
et al. 2015] is an effective tool for improving the review process,
however it is not suitable for interactive manipulation because rig
control adjustments generate new poses and therefore diminish the
utility of caching geometry.

Modern animation systems evaluate scene graphs using multi-
ple threads. However, parallel evaluation alone is insufficient to
guarantee real-time interactive performance. Critical tool updates
and rig optimizations are often required to ensure optimal system
performance. The remainder of this paper discusses the process of
tuning our software and rigs to achieve significant performance
improvements by leveraging Maya’s Evaluation Manager in Parallel
mode (EMP) [Autodesk 2016], coupled with GPU deformers.

2 APPROACH
2.1 Tool Updates for Parallel Evaluation

To take advantage of the EMP, it was necessary to update existing
tools to run safely and correctly in multi-threaded environments.

2.1.1 Make Deformers Thread Safe. Every custom deformer was
upgraded to be thread safe for multi-threaded execution. The OpenMP
library was replaced with Intel’s TBB library to avoid thread over-
subscription. Plus, special instrumentation was added to deformers
to troubleshoot performance issues using Maya’s profiler.

2.1.2 Break Up Complex Deformer Nodes. Many of our deform-
ers combined multiple functions into a single node in order to
take advantage of internal parallelization within a single-threaded
evaluation environment. However, this embedded parallelization
creates a bottleneck in the EMP. Breaking up these complex custom
deformer nodes into smaller, simpler nodes enables the EMP to
schedule the deformers in parallel and speed up evaluation.

2.1.3 Convert Python Nodes to C++ Nodes. Python’s global inter-
preter lock (GIL) forces all python nodes to be scheduled serially.
This prevents EMP from evaluating efficiently and causes a major
bottleneck in system performance. Therefore, custom Python nodes
in the rigs were converted to C++.

https://doi.org/10.1145/3306307.3328181
https://doi.org/10.1145/3306307.3328181

SIGGRAPH ’19 Talks, July 28 - Aug 01, 2019, Los Angeles, CA, USA

2.14 Create A Custom Evaluator for PBCS. The traditional DG uses
apull evaluation model while the EMP uses a push evaluation model.
With DG, PBCS skips costly rig evaluations by not pulling output
geometries. With EMP, PBCS must decide if costly rig evaluations
can be skipped at the beginning of an evaluation cycle. This is
accomplished by creating a custom evaluator that skips nodes upon
cache hits and thereby shortens the time of rig evaluations.

2.1.5 Implement GPU Deformers. All custom rig deformers were
re-implemented to work with the GPU. The kernels were written
in OpenCL which allows the EMP to deform geometry on the GPU
and pass the output data directly to a viewport renderer.

2.2 Rig Optimizations

The following rig optimizations focus on procedural ways to post
process rigs to make them suitable for multi-threaded evaluation
and GPU acceleration. Each was designed to enhance performance
while preserving a workflow designed to optimize the authoring
process.

2.2.1 Create Unique Deformer Chains. Costly deformer nodes that
affected multiple meshes were split into several deformers, with
each ultimately affecting only one mesh. This reduced the depen-
dencies between meshes and allowed each mesh to be evaluated
separately. It also enabled each mesh to be deformed by a unique
chain of deformers, which is required to utilize GPU acceleration.
This is the most impactful rig optimization we made.

2.2.2 Optimize Mesh Size. Large meshes are costly to evaluate
and often create a bottleneck, where many idle threads wait for a
few busy ones to finish. To avoid this situation, we tried cutting
large meshes into a collection of smaller ones. On average, cutting
the body of a rig into eleven pieces and the face into six, with
approximately 1000 to 2000 vertices per mesh, produced the greatest
performance gains in EMP. The cut-up meshes were recombined
into a single mesh via a custom parallel blending node.

Cutting large meshes improved EMP performance, but also in-
creased GPU mesh copy overhead. The number of meshes sent
to the GPU has a greater impact on performance than the size of
the meshes themselves. Experimental results showed that the GPU
operated most efficiently with 20 to 50 meshes when running on
24-core machines. Since the GPU gains far exceeded any improve-
ments we were seeing in EMP performance in terms of scalability,
ultimately we combined geometry to lower the number of meshes
sent to the GPU.

2.2.3 Break Large Evaluation Graph Cycles. In EMP, a large cycle in
the evaluation graph creates a bottleneck. All nodes in an evaluation
graph cycle are grouped into a single cluster and executed by the
same thread. For example, all nodes in an inverse kinematics (IK)
system naturally form a cycle. If a rig depends on an IK system to
evaluate before it is scheduled, most of the rig is evaluated by just
a few threads. Some cycles can be removed by using alternative
rigging methods. For instance, some automation can be replaced
with efficient pose-space deformers.

2.24 Remove Output Mesh Dependencies. Any deformation that
depended on the evaluation of another output mesh was modi-
fied to depend on a smaller intermediate mesh, with a duplicated

Kahwaty, Yoder, Lin, Lee, and Suroviec

deformation chain. This eliminated the slowness incurred by evalu-
ating the other output mesh and allowed the GPU to evaluate the
deformation chains in parallel.

2.2.5 Remove Head Geometry. Historically, the head geometry was
cut off and blended back onto the body to optimize single-threaded
performance. This allowed the face rig to exist on its own mesh
and to be turned off completely when disabled. However, this setup
prevented a large portion of the rig from being sent to the GPU.
To remedy this, all head deformers were transferred to the body,
making it possible to remove the head from the rigs entirely.

3 RESULTS

The interactive manipulation performance of the optimized charac-
ter rigs was measured in terms of DG, EMP, and GPU evaluation
modes. Figure 2 contains performance comparisons with and with-
out rig optimization for the character rig shown in Figure 1. The
benefits of using parallel evaluation can be seen even in the original
rig which shows a 2.7x speed-up in EMP when compared to the
single-threaded DG performance. However, the original rig was
not structured for GPU deformation, and therefore did not obtain
any performance gains with GPU deformations enabled. With the
optimized rig, EMP provided 4.4x speed-up over DG, and enabling
the GPU provided an additional 1.7x speedup over EMP alone. This
shows that rig optimizations are necessary to take full advantage
of parallel evaluation and GPU deformations.

As discussed in Section 3, the number and size of the meshes has
a significant impact on performance. Furthermore, optimizing for
parallel performance is counter to optimizing for GPU deformation.
In order to investigate the scalability of the GPU to accelerate
deformations, isolated tests were conducted on a single mesh to
examine the effect of mesh resolution on each evaluation mode
(Fig 3). As the vertex count goes up, traditional DG evaluation as
well as EMP performance falls quickly while, in contrast, the GPU
performance scaled better as mesh complexity increased. It is worth
noting that with low vertex counts, the DG evaluation can perform
better than both EMP and GPU because of the associated overhead.
These tests show that the GPU has a much higher potential to scale
as characters become more complex.

4 CONCLUSION

Rig manipulation performance was significantly improved using
Maya’s EMP with GPU-accelerated deformations. Tool updates
were necessary to leverage the parallel and GPU evaluation, and
rigs were optimized for the new parallel evaluation model. These
adjustments were applied to most characters on Frozen 2, result-
ing in an 8x increase in interactive performance on average, with
many characters achieving real-time manipulation rates. By up-
dating tools and rigs to utilize parallel and GPU evaluation, we
have opened up the potential to take advantage of future hardware
advancements, such as additional cores and more powerful GPUs.

REFERENCES

Autodesk. 2016. Maya. (2016). https://www.autodesk.com/products/maya

Andy Lin, Gene S. Lee, Joe Longson, Jay Steele, Evan Goldberg, and Rastko Stefanovic.
2015. Achieving Real-time Playback with Production Rigs. In ACM SIGGRAPH
2015 Talks (SIGGRAPH ’15). ACM, New York, NY, USA, Article 11, 1 pages. https:
//doi.org/10.1145/2775280.2792519

https://www.autodesk.com/products/maya
https://doi.org/10.1145/2775280.2792519
https://doi.org/10.1145/2775280.2792519

	Abstract
	1 Introduction
	2 Approach
	2.1 Tool Updates for Parallel Evaluation
	2.2 Rig Optimizations

	3 Results
	4 Conclusion
	References

