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SUPPLEMENTARY MATERIALS: ALGEBRAIC ERROR ANALYSIS
FOR MIXED-PRECISION MULTIGRID SOLVERS∗

STEPHEN F. MCCORMICK† , JOSEPH BENZAKEN‡ , AND RASMUS TAMSTORF‡

SM1. Double relaxation sweeps. The theory in the main paper is restricted
to V(1, 0)-cycles, meaning that each V uses one pre-smoothing sweep on the way
down through the coarse grids and no post-smoothing sweeps on the way back up to
the finest. This specific cycle simplifies the analysis because post-smoothing sweeps
substantially complicate the estimates by the accumulation of errors in the transfer of
residuals to the coarse levels and, to a lesser extent, because a single pre-smoothing
sweep is easier to analyze than multiple sweeps. On the other hand, while the analysis
of a general V-cycle would be too complicated to present here, we can more easily
analyze multiple pre-smoothing sweeps as we illustrate now for a V(2, 0)-cycle.

A relatively simple way to handle multiple sweeps is to combine them into one. To
this end, for each j ∈ {1, 2}, consider a monotonically energy-convergent stationary
linear iteration x← x−M (j)(Ax− b), where M (j) ∈ Rn×n, and let αj be a constant
such that computingM (j)z for a vector z ∈ Rn in ε̇-precision yields the resultM (j)z+
δ, ‖δ‖ ≤ αj ε̇‖z‖. Then the key point here is that the error propagation matrix for
relaxation with preconditioner M (1) followed by relaxation with preconditioner M (2)

can be written as (I−M (2)A)(I−M (1)A) = I−M (2)A, whereM (2) = M (1) +M (2)−
M (2)AM (1). We can therefore think of, and implement, two relaxation sweeps as just
the one sweep y ← y−M (2)(Ay−r), which means that we can analyze a V(2, 0)-cycle
as just a V(1, 0)-cycle with this M (2). The implication is that we just need to provide
estimates for ‖M (2)‖ and a constant αM(2) such that computing M (2)z for any vector
z in ε̇-precision yields the result M (2)z+ δM(2) , ‖δM(2)‖ ≤ αM(2) ε̇‖z‖. This is done in
our next theorem.

Theorem SM1.1. Double Sweeps. For a double sweep in the ordering specified by
M (2)z = ((M (2)z) + (M (1)z)− (M (2)(A(M (1)z)))), the constant αM(2) can be chosen
as follows:

αM(2) = ‖M (2)‖+ (1 + ε̇)[(‖M (2)‖+ α2ε̇)(‖A‖α1 + ψṁAα1ε̇ + ψṁA‖M (1)‖)
+ ‖A‖ · ‖M (1)‖α2 + ‖M (1)‖+ ‖M (2)‖+ 2α1 + 2α2].(SM1.1)

Moreover, in general, ‖M (2)‖ ≤ ‖M (1)‖+‖M (2)‖+‖A‖ ·‖M (1)‖ ·‖M (2)‖. The special
case M (1) = M (2) = ω

‖A‖I, 0 < ω < 2 yields the sharp estimate ‖M (2)‖ ≤ 2ω
‖A‖ .

Proof. The following is meant to clarify the stages for computingM (2)z, with the
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subscripted w’s standing for the indicated quantities computed in ε̇-precision:

M (2)z = ((M (2)z)︸ ︷︷ ︸
w4

+ (M (1)z)︸ ︷︷ ︸
w1

− (M (2) (A (M (1)z)︸ ︷︷ ︸
w1

)

︸ ︷︷ ︸
w2

)

︸ ︷︷ ︸
w3

).

︸ ︷︷ ︸
w5

Thus, by definition,

(SM1.2) w1 = M (1)z + δ1, ‖δ1‖ ≤ α1ε̇‖z‖.

We then use (2.3) in the main paper to obtain the slight overestimate

w2 = AM (1)z +Aδ1 + δ2, ‖δ2‖ ≤ ψṁAε̇‖w1‖ = ψṁAε̇‖M (1)z + δ1‖.

Letting δ3 = Aδ1 + δ2, where ‖δ3‖ ≤ ‖A‖ · ‖δ1‖+ ψṁAε̇(‖δ1‖+ ‖M (1)z‖), yields

w2 = AM (1)z + δ3, ‖δ3‖ ≤
(

(‖A‖+ ψṁAε̇)α1 + ψṁA‖M (1)‖
)
ε̇‖z‖.

Similarly,

w3 = M (2)AM (1)z +M (2)δ3 + δ4, ‖δ4‖ ≤ α2ε̇‖w2‖ = α2ε̇‖AM (1)z + δ3‖.

Letting δ5 = M (2)δ3 + δ4, where ‖δ5‖ ≤ ‖M (2)‖ · ‖δ3‖+α2ε̇(‖AM (1)z‖+ ‖δ3‖), yields
w3 = M (2)AM (1)z + δ5, ‖δ5‖ ≤ Υε̇‖z‖, where

(SM1.3) Υ = (‖M (2)‖+α2ε̇)(‖A‖α1+ψṁAα1ε̇+ψṁA‖M (1)‖)+‖A‖·‖M (1)‖α2ε̇‖z‖.

We can now use the estimate w4 = M (2)z+ δ6, ‖δ6‖ ≤ α2ε̇‖z‖ together with (SM1.2)
and (SM1.3) to obtain

w5 = (w1 + w4 − w3) + δ7 + δ8 = M (2)z + δ1 − δ5 + δ6 + δ7 + δ8,

‖δ7‖ ≤ ε̇‖w1 + w4‖ ≤ (‖M (1)‖+ ‖M (2)‖+ α1 + α2)ε̇‖z‖,
‖δ8‖ ≤ ε̇‖w1 + w4 − w3 + δ7‖ ≤ ε̇(‖M (2)‖‖z‖+ ‖δ1‖+ ‖δ5‖+ ‖δ6‖+ ‖δ7‖).

Letting δ = δ1 − δ5 + δ6 + δ7 + δ8, then w5 = M (2)z + δ, where

‖δ‖ ≤ ‖δ1‖+ ‖δ5‖+ ‖δ6‖+ ‖δ7‖+ ‖δ8‖

≤
(
ε̇‖M (2)‖+ (1 + ε̇)(‖δ1‖+ ‖δ5‖+ ‖δ6‖+ ‖δ7‖

)
‖z‖

≤
(
‖M (2)‖+ (1 + ε̇) [α1 + α2 + Υ + α1 + α2]

)
ε̇‖z‖,

thus establishing (SM1.1). The estimates for ‖M (2)‖ are straightforward.

SM2. Second-order Chebyshev iteration. The equation in (SM1.1) can be
used in a recursive way to analyze any Krylov method, where the error propagation
matrix is a polynomial in A. For example, it is fairly straightforward to show that
αM(2) = O( ṁA

‖A‖ ) for the Kth-order Chebyshev relaxation (cf., [SM1]), although the
constant in this order bound depends exponentially on K. On the other hand, a more
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direct approach can achieve a somewhat tighter bound, as illustrated for the case
K = 2 in our next theorem.

Second-order Chebyshev relaxation can be formed from two sweeps of Richardson
iteration with error propagation factors of the form I−sjA, j = 1, 2. Assume that the
coefficients in the Chebyshev factors are chosen to so that 0 < sj = O( 1

‖A‖ ), j = 1, 2.
This assumption would generally hold in the multigrid context when the smoothing
interval is chosen to be a fixed percentage of the upper spectrum of A. We can thus
write Chebyshev iteration in the form y ← y−MC(Ay− r), where MC = ω1I −ω2A,
ω1 = O( 1

‖A‖ ) > 0, and ω2 = O( 1
‖A‖2 ) > 0. Define ṁA = mA

1−mAε̇ , where mA is the
maximum number of nonzeros in the rows of A. Finally, suppose that computing
MCz in ε̇-precision for any vector z yields MCz + δMC

, ‖δMC
‖ ≤ αMC

ε̇‖z‖, for some
constant αMC

.

Theorem SM2.1. Chebyshev. For one second-order Chebyshev iteration in the
ordering specified by MCz = (ω1z)− (ω2(Az)), we can choose

αMC
= ‖MC‖+ (ω1 + (1 + ε̇)ω2ψṁA + ω2‖A‖)(1 + ε̇).

Note that ‖MC‖ = O( 1
‖A‖ ) and, if ψ ≈ O(‖A‖), then αMC

= O
(
ṁA

‖A‖

)
.

Proof. Computing MCz according to MCz = ((ω1z)︸ ︷︷ ︸
w1

− (ω2 (Az)︸︷︷︸
w2

)

︸ ︷︷ ︸
w3

)

︸ ︷︷ ︸
w4

, we have

w1 = ω1z + δ1, ‖δ1‖ ≤ ω1ε̇‖z‖,
w2 = Az + δ2, ‖δ2‖ ≤ ψṁAε̇‖z‖,
w3 = −ω2w2 + δ3, ‖δ3‖ ≤ ω2ε̇‖Az + δ2‖ ≤ ω2ε̇(‖A‖+ ψṁAε̇)‖z‖,
w4 = w1 + w3 + δ4, ‖δ4‖ ≤ ε̇‖w1 + w3‖ = ε̇‖MCz + δ1 + ω2δ2 + δ3‖.

This implies that w4 = MCz+ δC , δC = δ1−ω2δ2 + δ3 + δ4. The theorem now follows
from noting that

‖δC‖ ≤ ‖δ1 − ω2δ2 + δ3‖+ ε̇‖MCz + δ1 + ω2δ2 + δ3‖
≤ ‖MC‖‖z‖ε̇ + (‖δ1‖+ ‖ω2δ2‖+ ‖δ3‖)(1 + ε̇).

Remark SM2.2. Chebyshev iteration based on A preconditioned by its diagonal
D can be formed from two sweeps of damped Jacobi with error propagation operators
I−sjD−1A = I−M (j)A, whereM (j) = M

(j)
ii = O

(
κ(D)
‖A‖

)
, j = 1, 2. To estimate αMC

for this case, we can mimic the proof of Theorem SM2.1, but with the understanding
now that the ωj are matrices: ω1 = M (2)+M (1) and ω2 = M (2)AM (1). If the diagonal
matrices M (j) have been formed accurately beforehand, perhaps in the setup phase
at higher precision, then the line of reasoning is much the same as the above proof
with two extra steps to account for the increased complexity of MC . The resulting
estimate is of the same order as that in Theorem SM2.1 with the exception that a
power of κ(D) appears in the implied constant. When the diagonal entries of A are
widely varying, it may be more effective to construct D−1A in higher precision before
it is used in V-cycles in order to avoid an explicit dependence on the condition number
of D appearing in the estimate for αMC

.
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