
Mathematical Tricks for scalable and appealing crowds in Walt
Disney Animation Studios’ "Raya and the Last Dragon"

Nicolas Nghiem
Walt Disney Animation Studios

Burbank, USA

Figure 1: (Left) Anisotropic distances for PBD with ellipsoidal particles, (Center) Procedural curve fitting animation layer, (Right) Footstep detection with distance integral invariant

ABSTRACT
The crowds department had to tackle a variety of challenging shots
for Walt Disney Animation Studios’ "Raya and the Last Dragon"
such as beetles crawling on top of each other, immense fish simula-
tion or dragon choreography.

In order to handle this level of complexity while keeping a good
amount of artistic control, we implemented some effective technical
solutions such as the use of anisotropic distances in Position based
Dynamics (PBD) and boids simulations, procedural animation layers
for fish and dragons or distance integral invariant to detect dragon
foot contacts.

CCS CONCEPTS
• Computing methodologies → Procedural animation; Colli-
sion detection;Motion processing.

KEYWORDS
crowds, simulation, anisotropy, procedural animation, shape analy-
sis
ACM Reference Format:
Nicolas Nghiem. 2021. Mathematical Tricks for scalable and appealing
crowds in Walt Disney Animation Studios’ "Raya and the Last Dragon".
In Special Interest Group on Computer Graphics and Interactive Techniques
Conference Talks (SIGGRAPH ’21 Talks), August 09-13, 2021. ACM, New York,
NY, USA, 2 pages. https://doi.org/10.1145/3450623.3464650

1 INTRODUCTION
One of the main challenges that crowds artists face when crafting
their shots is to balance scalability and appeal. There is an intrin-
sic tension between keeping each character’s performance unique

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
SIGGRAPH ’21 Talks, August 09-13, 2021, Virtual Event, USA
© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8373-8/21/08.
https://doi.org/10.1145/3450623.3464650

and using a toolset geared towards automation. A solution is to
consistently adapt this toolset to fit precisely the sequences’ require-
ments. Those improvements can benefit the crowds artists in every
step of their crafts: fleshing the crowd as an organic entity faster,
enhancing the individual performances with dedicated tools and
automating annotations on their output data to help downstream
departments.

We present some of the tools we implemented during production
that answer to this broad range of needs: anisotropic distances
in crowds simulation for global movement, procedural animation
layers for detailed performance and shape analysis features for
automated footstep annotation.

2 ANISOTROPY IN CROWDS SIMULATION
In Raya and the Last Dragon, we used simulation-based techniques
to handle a school of fish and a swarm of beetles. Using anisotropic
distances in these crowds simulation is motivated by two main
aspects. In the Boids model [Reynolds 1987], the main behaviors
of the agents result from their perceived distance to the rest of the
crowd and not necessarily the Euclidean distance. In the algorithm
developed in our department to create Ralphzilla with a PBD sim-
ulation [Byun et al. 2019], using the Euclidean distance implies a
spherical representation of the particles. However, beetles are best
approximated by ellipsoids as shown in Figure 2 ; applying directly
our code resulted in floating beetles. We decided to use anisotropic
distances in those simulations to address those issues.

As a reminder, there is a direct relation between ellipsoids and
anisotropic distances. Anisotropy is expressed via a metric ten-
sor 𝐺 ∈ R3𝑥3 symmetric definite positive that induces a distance
𝑑𝐺 (𝑥,𝑦) =

√︁
(𝑥 − 𝑦)𝑇𝐺 (𝑥 − 𝑦). The unit sphere with regard to 𝑑𝐺

is an ellipsoid and its radius is given by (𝜆−1/2
𝑖

)𝑖 with 𝜆𝑖 the eigen-
values of 𝐺 . We use the notation: 𝑆 (𝑐,𝐺) for the ellipsoid of metric
𝐺 centered in 𝑐 .

Computing the metric tensor. We first start by computing a proxy
ellipsoid that approximates our agent. A natural way to extract a
symmetric definite positive matrix is to compute the covariance
matrix. We use the assumption that our asset is well oriented which

https://doi.org/10.1145/3450623.3464650
https://doi.org/10.1145/3450623.3464650


SIGGRAPH ’21 Talks, August 09-13, 2021, Virtual Event, USA Nicolas Nghiem

Figure 2: Comparison between spherical and ellipsoidal
proxy shapes

means we only have to store the eigenvalues of the covariance
matrix in a vector rather than storing the full matrix. We also leave
an uniform scale parameter to the artist to allow further control.

Using anisotropy. We adapt existing algorithms by replacing the
Euclidean distance with an adapted anisotropic distance 𝑑𝐺′ .

For boids forces and detection radius, each particle follows its
own metric, defined by𝐺 ′

𝑖
= 𝑂𝑖 (𝑡)𝑇𝐺𝑖𝑂𝑖 (𝑡) with𝑂𝑖 (𝑡) the current

orientation of the particle 𝑖 .
For PBD collision detection, let us first note that two ellipsoids

𝑆0 (𝑐0,𝐺0), 𝑆1 (𝑐1,𝐺1) collide if and only if 𝑐0 − 𝑐1 belongs to the
Minkowski sum of the ellipsoids centered around the origin 𝑆 ′0 (𝑂,𝐺0),
𝑆 ′1 (𝑂,𝐺1) defined as: 𝑆 ′0 ⊕ 𝑆 ′1 = {𝑥 + 𝑦 |𝑥 ∈ 𝑆 ′0, 𝑦 ∈ 𝑆 ′1}.

TheMinkowski sum of two ellipsoids is not generally an ellipsoid.
However, [Kurzhanski and Varaiya 2002] gives an interior and an
exterior ellipsoidal estimators of the Minkowski sum along the
direction 𝑙 = (𝑐0 − 𝑐1)/∥𝑐0 − 𝑐1∥:

𝐺− = ((𝑅0𝐺−1/2
0 + 𝑅1𝐺

−1/2
1 )𝑇 (𝑅0𝐺−1/2

0 + 𝑅1𝐺
−1/2
1 ))−1 (1)

with 𝑅0, 𝑅1 two orthogonal matrices that align 𝑅0𝑙, 𝑅1𝑙 and 𝑙 .

𝐺+ = ((1 +𝐶−1)𝐺−1
0 + (1 +𝐶)𝐺−1

1 )−1 (2)

with 𝐶 =

√︃
𝑙𝑇𝐺−1

0 𝑙/
√︃
𝑙𝑇𝐺−1

1 𝑙

Given 𝐺∗ the chosen estimator, 𝑆0, 𝑆1 collide if 𝑑𝐺∗ (𝑐0, 𝑐1) < 1
which defines our PBD constraint.

Discussion. This approach introduces limited changes to our exist-
ing code, which allowed us to leverage it quickly for production
need. Indeed, it only requires to store the particle scale as a vec-
tor rather than a float and call a different distance function which
involves just a few more 3𝑥3 matrix multiplications. Using a PBD
simulation is advantageous as it is fast -between 14 and 34 fps in our
shots with our OpenCL implementation in Houdini- and intuitive
to use, allowing the artist to perform more iterations and have more
control. While our approach worked satisfyingly in production, we
plan in future work to compare it to other methods for ellipsoid
collision described in [Jia et al. 2011] or [Müller and Chentanez
2011] in terms of speed and accuracy.

3 PROCEDURAL ANIMATION LAYERS
Once the global movement of the crowd is set, we used proce-
dural animation techniques to enhance individual performances.
We work within our Skeleton Library [El-Ali et al. 2016], which lets
us add animation layers on top of the existing cycle animation. We
store our animation layers as quaternions, and apply them during
rig evaluation on top of the base animation. We also use a blend
parameter for weighting the animation layer with spherical inter-
polation (see Figure 1). This blend parameter can be set manually

by the artist or driven by attributes such as the speed of the agent
for an extra artistic control.

Cycle Amplification. One of those animation layers amplifies the
difference between the current pose and a given reference pose.
For each desired joint, we compute the quaternion that aligns the
current to the reference local transform. We give controls to the
artist regarding the reference pose: it can either be the rest pose,
a crafted pose, a barycenter of all the cycle poses computed with
weighted spherical interpolation or even the cycle itself offsetted in
time. This approach was particularly efficient when applied to the
fish’s spine: amplifying the cycle during high acceleration phases
helped getting a more believable motion.

Curve Fitting. In some shots, particularly in the fish and dragon
sequences, constraining our particle to a curved trajectory and
reading the cycle as is resulted in a stiff motion, breaking the flow
of the choreography. To address this issue, we created a curve fitting
animation layer: we compute and store the rotations necessary to
align the spine of the character with the curve of its trajectory.

4 DETECTING DRAGONS’ FOOTSTEPS
For the dragon sequence, the Crowds department had to share
data with the Effects department to create magic ripples when the
dragons land their feet. We proposed a tool that could, given crowds
particles, trails the motion of each foot and automatically labels the
given curves with an attribute 𝑓 𝑜𝑜𝑡𝐶𝑜𝑛𝑡𝑎𝑐𝑡 . The labelling process
was challenging as the dragons were running in the air and could
change their orientation over time. Moreover, they could sometimes
blend with a glide cycle and we did not want to detect any foot
contact in those periods.

We used the fact that foot contacts correspond to saliencies
along the trajectory. We computed two features: the local curvature
and the distance integral invariant, used in shape analysis [Manay
et al. 2006], and study their local maxima to annotate the curves.
Furthermore, we left a threshold parameter so that the artists can
filter more or less aggressively the labels detected during glide
phases. An example result can be seen in Figure 1.

REFERENCES
Dong Joo Byun, Alberto Luceño Ros, Alexander Moaveni, Marc Bryant, Joyce Le

Tong, and Moe El-Ali. 2019. Creating Ralphzilla: Moshpit, Skeleton Library and
Automation Framework. In ACM SIGGRAPH 2019 Talks (Los Angeles, California)
(SIGGRAPH ’19). Association for ComputingMachinery, New York, NY, USA, Article
66, 2 pages. https://doi.org/10.1145/3306307.3328179

Moe El-Ali, Le Tong, Josh Richards, Tuan Nguyen, Alberto Luceno Ros, and Nor-
man Moses Joseph. 2016. Zootopia Crowd Pipeline. In ACM SIGGRAPH 2016 Talks
(Anaheim, California) (SIGGRAPH ’16). Association for Computing Machinery, New
York, NY, USA, Article 59, 2 pages. https://doi.org/10.1145/2897839.2927467

Xiaohong Jia, Yi-King Choi, Bernard Mourrain, andWenpingWang. 2011. An algebraic
approach to continuous collision detection for ellipsoids. Computer Aided Geometric
Design 28, 3 (2011), 164–176. https://doi.org/10.1016/j.cagd.2011.01.004

A.B. Kurzhanski and P. Varaiya. 2002. On Ellipsoidal Techniques for Reachability Analy-
sis. Part II: Internal Approximations Box-valued Constraints. Optimization Methods
and Software 17, 2 (2002), 207–237. https://doi.org/10.1080/1055678021000012435

Siddharth Manay, Daniel Cremers, Byung-Woo Hong, Anthony Yezzi, and Stefano
Soatto. 2006. Integral Invariants and Shape Matching. Birkhäuser Boston, Boston,
MA, 137–166. https://doi.org/10.1007/0-8176-4481-4_6

Matthias Müller and Nuttapong Chentanez. 2011. Solid Simulation with Oriented
Particles. ACM Trans. Graph. 30 (07 2011), 92. https://doi.org/10.1145/2010324.
1964987

Craig W. Reynolds. 1987. Flocks, Herds and Schools: A Distributed Behavioral Model.
SIGGRAPH Comput. Graph. 21, 4 (Aug. 1987), 25–34. https://doi.org/10.1145/37402.
37406

https://doi.org/10.1145/3306307.3328179
https://doi.org/10.1145/2897839.2927467
https://doi.org/10.1016/j.cagd.2011.01.004
https://doi.org/10.1080/1055678021000012435
https://doi.org/10.1007/0-8176-4481-4_6
https://doi.org/10.1145/2010324.1964987
https://doi.org/10.1145/2010324.1964987
https://doi.org/10.1145/37402.37406
https://doi.org/10.1145/37402.37406

	Abstract
	1 Introduction
	2 Anisotropy in crowds simulation
	3 Procedural Animation Layers
	4 Detecting dragons' footsteps
	References

