

Stereo Compositing Accelerated by Quadtree Structures
in Piecewise Linear and Curvilinear Spaces

Dmitriy Pinskiy Joseph Longson Peter Kristof Evan Goldberg Robert Neuman

Walt Disney Animation Studios

Figure 1: Our compositing scheme, even when applied to stereo CG renderings with drastically different stereo settings (e.g. the left and

middle renderings), still produces smooth transition from foreground to background regions as shown on the right.

Abstract

We present a new stereoscopic compositing technique that

combines volumetric output from several stereo camera rigs.

Unlike previous multi-rigging techniques, our approach does not

require objects rendered with different stereo parameters to be

clearly separable to prevent visual discontinuities. We

accomplished that by casting not straight rays (aligned with a

single viewing direction) but curved rays, and that results in a

smooth blend between viewing parameters of the stereo rigs in the

user-defined transition area. Our technique offers two alternative

methods for defining shapes of the cast rays. The first method

avoids depth distortion in the transition area by guaranteeing

monotonic behavior of the stereoscopic disparity function while

the second one provides a user with artistic control over the

influence of each rig in the transition area. To ensure practical

usability, we efficiently solve key performance issues in the ray-

casting (e.g. locating cell-ray intersection and traversing rays

within a cell) with a highly parallelizable quadtree-based spatial

data structure, constructed in the parameterized curvilinear space,

to match the shape definition of the cast rays.

CR Categories: I.3.3 [Picture/Image Generation]: Line and curve

generation, Viewing algorithms, I.3.4 [Graphics Utilities]:

Graphics editors, I.4.8 [Scene Analysis]: Stereo, I.4.10 [Image

Representation]: Volumetric.

Keywords: stereo, line and curve generation, viewing algorithms.

1 Introduction

Recent popularity of stereoscopic rendering in CG animation has

led to increasing complexity of stereoscopic 3D films. Complex

animation shots should not be restricted to a single stereo setup.

We desire the ability to assign different stereo depths to different

groups of objects in order to allow greater artistic flexibility and

control of the stereoscopic 3D effect. This is generally

accomplished with multi-rigging - rendering from different pairs

of stereo cameras separately and then compositing the output

together. The muti-rigging technique has been heavily employed

in many feature films (e.g. “Meet the Robinsons” and “Beowulf”)

[Mendiburu 09]. However, multi-rigging, as Mendiburu describes,

has an important artistic limitation - it requires objects rendered

with different stereo parameters to be clearly separatable with

only empty space between them. If this requirement is not met,

the output results in visual discontinuities. This tremendously

limits the usefulness of multi-rigging since in many cases there

are large common objects (e.g. secondary props) filling the space

between the main sets of objects. The one of the most common

objects that might be visible in several stereo rigs and

consequently prevent from applying multi-rigging composition is

a ground plane as shown in Figure 2.

Figure 2: Traditional multi-rigging in results in visual

discontinuities unless composited objects are separable.

The goal of our method is to provide artistic freedom and

eliminate the above restriction and thus increase the scope of

multi-rigging in virtually any CG scene. It is accomplished by

utilizing a type of volumetric data known as deep images and then

casting rays, curved to guarantee the visual continuity between the

stereo pairs. To ensure practical value, we also present a highly

parallelizable, quadtree-based spatial data structure. The

performance efficiency of this spatial data structure during ray-

casting comes from its construction, which is done in the

parameterized curvilinear space defined by the casting-rays’ shape

definition. By doing this, we effectively solve key performance

issues of ray-casting, e.g. locating cell-ray intersection and

traversing rays within a cell.

The principal contributions of our paper are: (1) removal of the

empty space restriction to ensure greater artistic freedom in multi-

rigging, (2) a compositing scheme that uses ray-casting to

smoothly connect multiple stereo cameras in a multi-rig setup

and (3) an optimized quadtree that delivers up to two times speed-

up for CG shots.

2 Background and Related Work

One of the key challenges that we face in compositing the output

of multiple stereo rigs is producing a depth-coherent look. As we

progress from one region to another, we need the ability to

prescribe appropriate disparities in order to seamlessly bridge

stereoscopic settings of the neighboring composited regions.

Although this particular problem has not been addressed in the

context of multi-rigging, disparity manipulation has been

researched in a number of papers in various other contexts. Given

a desired disparity range for the scene, Jones et al. compute the

left-right camera separation for the optimum scene depth [2001],

and Holliman calculates the stereoscopic camera parameters for

the scene to obtain needed disparity in a given region of interest

[2004]. Both works can be considered as scene planning

approaches. In contrast, we post-process the output of the stereo-

rigs and respect users' stereo depth choices in the composited

regions, allowing depth manipulation only in the overlapping

regions to ensure seamless transition. Depth manipulation in post-

processing has been offered in a number of other approaches. For

example, Koppal et al. describe a set of post-processing tools to

achieve the desired disparity for the 2D images [2011] and Lang

et al. provide a more advanced algorithm for smoothly warping

2D images [2010]. Unfortunately, 2D image manipulation

introduces distortion, and, as a result, some objects can appear

unnaturally stretched and compressed. In addition, approaches

that are based on 2D image warping suffer from problems due to

hole-filling issues and the lack of proper handling of semi-

transparency since the data behind opaque objects is not available.

To avoid these problems, Kim et al. compute and modify disparity

information based on volumetric input, using light fields [2011].

However, in a production environment, light fields can be more

costly to produce than deep images, which are easily generated

with production quality rendering packages such as Pixar's

Renderman.

Deep images have been primarily used in the rendering of high

quality shadowing [Lokovic and Veach 2000]. However, now

they are also commonly employed in final compositing, using

software packages such as Nuke and Houdini. Sample-based deep

images represent a rendering produced by a camera with the

viewing direction aligned with z-axis and the image plane aligned

with XY plane. A deep image is given as an N x M array of deep

pixels Pn,m (see Figure 3). Each deep pixel is a collection of

samples, sorted by their depth:

Pn,m ={(c0, a0, z0), (c1, a 1, z1), ... }; z0 < z1 <... < zn

where ci, ai, zi (i ∈ N) represent respectively a sample's color,

opacity, and z-depth components along the ray emitted from the

pixel with image coordinates (n, m). A complete set of all pixels

from the same height m forms a slice Sm = {P0,m, P1,m, ..., Pn,m}.

We define a deep image function I as a map from a deep pixel and

bounding z depth range, [zstart, zend], to the subset of samples that

contribute to this deep pixel:

I(n, m, zstart, zend) = {(c, a, z) ∈ Pn,m | zstart ≤ z ≤ zend} (1)

To ensure that I has logarithmic time complexity, the samples are

sorted by their z-values in each deep pixel.

The central technique employed by our algorithm is the casting of

curved rays through a volume. This area has been researched

previously in the context of the creation of artistic effects and

scene exploration. Groller and Weiskopf et al. traverse the curved

cast rays directly in the physical space (P-space) [1995, 2004],

which involves computationally heavy intersection tests of a

curved cast ray with the geometrical primitives to find its entry

and exit points. Coleman et al. offer, in addition to P-space based

computations, an approach that is based on the computational

space (C-space) [2005]. The definition of C-space ensures that the

curved rays become straight and aligned with C-space's

coordinate axis. Consequently, computations in C-space

dramatically simplify ray-casting. However, translating the

geometry into C-space, (e.g. resampling the geometry into the

new-axis aligned grid structure) can lead to significant error.

Another related area is casting straight rays through curved data.

This area also has been addressed with P-space approaches [e.g.

Uselton 1991, Ramamoorthy and Wilhelms 1992, Hong and

Kaufman 1999] and C-space approaches that are based on

“unbending” geometry, rather than rays [e.g. Fruhauf 1994]. In

our ray-casting, we use both a P-space and a C-space based

traversal. In a typical stereo composition setup, the overlapping

volume between the two stereo-rigs’ regions is generally sparse

(e.g. usually only includes a ground plane and some props);

otherwise objects of the farthest region would be occluded. We

exploit the sparse nature of our data and build a performance

accelerating quadtree-like structure per each horizontal slice of

the deep images in the overlapped area. The quadtree's cells are

aligned with the coordinate axes of the curvilinear C-space,

defined by the curved cast rays. Consequently, we can effectively

skip all empty space as we follow our cast rays. In general, since

resampling leads to sampling errors, we do not attempt to

resample the input geometry into our curvilinear structure.

Instead, we cast curved rays through non-empty leaves in P-space

until the opacity reaches one. By doing this, we combine the

advantages of both approaches. The C-space based ray traversal

lets us quickly jump through regions without geometry while the

P-space based traversal ensures that we do not compromise

quality in areas where we have data.

Figure 3: An example of a NxM deep image generated for

perspective view (on the left) and a horizontal slice of the pixel

stack (on the right)

3 Deep Compositing Algorithm

We start our discussion of the algorithm with the stereo setup and

the problem definition. To ensure optical axis convergence, we

shift the cameras’ image planes by a user provided Horizontal

Image Translation (HIT) value, keeping the image planes

perpendicular to the same viewing direction. We define the

camera space with the origin at the mid-point of the left and right

cameras' focal points. Our x-axis is given by the offset of the focal

point of the right camera from the focal point of the left camera.

The camera's viewing direction represents the direction of the z-

axis. The y-axis is given by the cross-product of the other two

axes. Given two intersecting cast rays, originated at pixels with

coordinates (iL, j) and (iR, j) on the left and right cameras' image

planes on a slice j, disparity is computed at their intersection by

subtracting the horizontal component of the right pixel from the

horizontal component of the left one, i.e.

disparity = iL – iR (2)

Thus along the viewing direction (i.e. the z-axis) the disparity

progresses from negative to positive. Since the image planes of

the camera rig are offset in the x direction, we have a constant

disparity corresponding to any particular z-depth.

Although our algorithm trivially extends to setups with an

arbitrary number of stereo camera rigs, for the sake of simplicity

we describe the algorithm for multi-rigs with two stereo pairs of

cameras – Cam
L

1 / Cam
R

1, and Cam
L

2 / Cam
R

2 with focal points

at FL
1, F

R
1, F

L
2, and FR

2 (see Figure 4). Their corresponding deep

images are given by the deep image functions IL
1, I

R
1, I

L
2, and I

R
2,

as defined by (1). The user-specified inter-axial distances and HIT

values of the cameras are set to ensure that Cam
L

1 / Cam
R

1 would

produce a specific stereoscopic depth effect for foreground

objects and Cam
L

2 / Cam
R

2 would output a different desired

stereoscopic depth effect for background objects. The first stereo

camera rig's rendering volume, bounded by the near1 and far1

clipping z-planes, overlaps with the second stereo rig’s volume,

bounded by the near2, far2 clipping z-planes (i.e. near1 < near2 <

far1 < far2), thus forming the overlap region between near2 and

far1 z-planes. We assume that our multi-rig system is disparity-

consistent, meaning that the stereo disparity of the first rig at the

near2 z-depth is less than the stereo disparity of the second rig at

the far1 z-depth.

Figure 4: Setup for two stereo camera rigs

Our goal is to produce two 2D rgb images that are the composited

result of the left and right views. Conceptually, we need to merge

three volumetric regions (for each view) – (1) the near1 - near2

region, solely controlled by the first pair of the deep images, (2)

the near2 - far1 overlapping (blending) region, and (3) the far1 -

far2 region, derived from the second pair of deep images. It is

crucial that the overlapping blending regions be defined as a

seamless transition between the first pair of the deep images and

the second. In addition, the user should have intuitive controls to

art-direct the behavior in the blending region, by prescribing the

influence of each camera pair. Without losing generality, we

derive construction of a composite for the left view; the right view

can be analogously produced.

In our method, we utilize conventional ray-casting, where the rays

are cast along the viewing direction. For each pixel (i, j) of the

output 2D image, color ci,j is accumulated along ray li,j, in the

viewing, direction as

��,� 	= 	 �	�	 +	�1 −	�	�	���� +

																		�1	 − 	�1 −	�	�	���	��	��	+	. ..

(3)

where: (c0, a0), (c1, a1), (c2, a2), ... are respectively opacity and

color components of samples located along li,j and sorted by their

z-depth components: z0, z1, z2, ... In our case the viewing direction

is not well defined since the viewing direction of the same deep

pixel (i, j) is different for the first and second deep images. Thus

the key challenge of solving (3) is to determine Tnear1, far2, a set of

sample triplets (c, a, z) along a cast ray li,j between near1 and far2

������,���� 	= 	 {��	, �	, �	�, ���	��, ���, . . . } (4)

where near1< �	, �� , ... < far2. Tnear1, far2 can be subdivided into

three subsets Tnear1, near2, Tnear2, far1, T far1,far2, based on the near1,

near2, far1, far2 z-depths. Since the region bounded by near1 and

near2, is controlled solely by the first deep image li,j , it can be

represented as a straight line segment aligned with the viewing

direction of deep pixel (i, j) of the first deep image. Consequently

the samples can be obtained by locating the deep pixel's samples

with z-components between near1 and near2, i.e. Tnear1,near2 = IL
1(i,

j, near1, near2). Analogously in the far1-far2 region, Tfar1,far2=

I
L

2(i, j, far1, far2). Therefore (4) can be rewritten as

������,���� = 	 ��
���, �, !�"�, !�"��

																								∪ 	������,���� ∪ 	�$
���, �, %�"�, %�"��

(5)

Thus determining T near1, far2 reduces to finding T near2, far1.

3.1 Shape Definition of Cast Ray

One possible alternative for defining the shape of li,j in the

blending region is to represent it as a straight line segment that

connects the end of li,j portion in the near1-near2 region and the

beginning of li,j portion in the far1-far2 region. Thus a sample P on

li,j in the blending region could be computed using a simple linear

interpolation:

P = (1 - t) * C0 +t * C1 (6)

where C0 is the intersection of li,j with near2 z-plane, C1 is the

intersection of li,j with far1 z-plane, t is float parameter between 0

and 1 (Figure 5a).

In order to produce a believable stereoscopic visualization, we

need to ensure that the disparity function is monotonically

increasing in the viewing direction, (i.e. along the casting rays).

Disparity naturally increases in the first and the last regions since

each of them are based on a single pair of stereo cameras and thus

the standard stereoscopic rendering rules are applied. Since the

disparity function (2) is monotonic and the monotonic behavior is

invariant under affine transformation (6), the resulting disparity in

the blending region is monotonic. Its increasing nature comes

from the stereo rig being disparity-consistent (i.e. the disparity of

the first rig at near2 is less than the second rig’s disparity at far1).

Unfortunately, the drawback of the linear definition of li,j is that it

introduces visual seams on the boundaries of the blending region

as seen in Figure 6. To avoid these seams and ensure smooth

transition between the regions, we use a higher degree

polynomial. Inside the blending region we define li,j using a cubic

Bezier curve, which lies on the plane of the j-th slice of the deep

images. To ensure C0 continuity along li,j, we place the curve's

first control vertex C0 at the intersection of li,j with near2 z-plane.

To preserve C1 continuity at near2, where li,j transitions into the

blending region, we offset the second control vertex C1 from C0 in

the viewing direction of the deep pixel of the first camera. The

other two control vertices, C2 and C3, are similarly defined.

(Figure 5b). To enforce monotonic behavior of li,j in the z-

direction, we require C1.z < C2.z, (and thus the control vertices

remain in ascending order along the z-depth).

Figure 6: The linear and curvilinear schemes are applied to

composite the right cameras’ view of a planar surface textured

with line segments. Transition area boundaries, clearly revealed

in the linear composition (top), are not present when the

curvilinear scheme is applied (bottom)

Our algorithm calculates the positions of the control vertices for

each cast ray. However, to guarantee a consistent appearance

across all rays, the same ratio |C0C1| / |C2C3| is used in all control

point calculations. The significance of this ratio is that it describes

the cameras’ influence relative to each other since C0C1 and

C2C3 represent the viewing directions of the pixel in the two deep

images. By letting users prescribe the desired ratio, we provide

them with artistic control over the blending of the composite. The

shape of the cubic Bezier curve approaches the linear

interpolation equation as the lengths of C0C1 and C2C3 segments

shrink. By scaling up and down the segments’ length, the user can

balance between the monotonically increasing disparity and

transition smoothness.

3.2 Sampling along Cast Ray

Actual sampling along the ray's path in the blending region is

based on discretization of li,j in terms of deep pixel sample

intervals. Let li,j intersect k1 deep pixels of the first deep image

and k2 deep pixels of the second deep image in the blending

region; then li,j encounters the following sets of samples in the

first and second deep images respectively:

T
(1)

 near2, far1 = IL
1(i, j, near2, z0) ∪ IL

1(i-1, j, z0, z1) ∪ ...

∪ IL
1(i- k1, j, zk1-1, far1)

T
(2)

 near2,far1 = IL
2(i + k2, j, near2, z0) ∪ IL

2(i+k2 - 1, j, z0, z1) ∪	...

∪ IL
2(i, j, zk2-1, far1)

where zi (i ∈{0,..., k1-1}) and zj (j ∈{0,..., k2-1}) are the z

components of intersection points of li,j with the boundaries of the

deep pixels' cones in the first and second images respectively

(Figure 5c). Although most of the length of li,j is in the bounding

volumes of both images, small portions of li,j adjacent to near2

and far1 might lie only in one of the two deep images. That

typically happens when (i+k2) is greater than the horizontal

resolution N of the deep image, or (i-k1) is less than zero. In these

cases, samples will be used only from the single corresponding

deep image. While traversing the ray’s regions that lie in the

overlapping portions of the bounding volumes of the deep images,

we collect samples from both images and blend them based on

their location relative to near2 and far1. We ensure that advancing

along li,j from near2 to far1, the first deep image loses its influence

and the second one gains influence. This is handled by the

interpolation functions f1(a, z) and f2(a, z) that modify opacities of

the samples of the first and second deep images respectively:









<−

≥−










−

−
−•

=

0

01
),(

1

1

21

1

1

kiifa

kiif
nearfar

zfar
a

zaf

i

i

(a) (b) (c)

Figure 5: Cast rays’ shapes can be defined based on linear interpolation (a) which guarantees monotonic disparity or a higher degree

polynomial (b) which provides smooth transition. Samples along cast rays come from both volumes, except areas outside the frustum (c).









≥+

<+

−

−
•

=

Nkiifa

Nkiif
nearfar

zfar
a

zaf

i

i

2

2

21

1

2),(

Thus Tnear2,far1 needed for (5) can be defined as a set of T(1)
near2, far1

and T(2)
near2,far1 samples with modified opacities:

Tnear2,far1 = { c, f1(a), z) | (c, a, z) ∈ T(1)
near2,far1 }

 ∪ { c, f2(a), z) | (c, a, z) ∈ T(2)
near2,far1 }

4 Implementation using Curvilinear Quadtrees

In our implementation, since samples are already pre-sorted inside

their deep pixels, looking them up for a particular z-range is a fast

operation with logarithmic complexity and does not involve any

expensive arithmetic. However, if the stereoscopic parameters of

the composited regions are vastly different, and the input deep

images have high resolution, each ray li,j has to be cast through a

large number of deep pixels, which results in a significant number

of intersection tests between li,j and the deep pixels' boundaries.

Consequently, in these cases, the large number of intersection

tests becomes a performance issue. We observe that in practice

the first stereo camera is aimed at the near objects, while the

second camera is aimed at the background objects, and there is a

relatively large volume of empty space between them. Thus the

vast majority of the deep pixels’ regions that the rays cross are

empty. Therefore a significant portion of the intersection tests do

not contribute directly to the resulting color of a rasterized pixel.

To take advantage of this observation, we present a performance

acceleration data structure specifically aimed to detect and skip

empty areas along ray paths. Our data structure, built for each

slice of the deep image, is a variation of a quadtree, which has

been optimized for traversing rays in the viewing direction. To

reduce the curved ray/deep-pixel intersection tests to simple float-

comparison operations, we construct our data structure in

curvilinear space C where the curved rays become straight lines.

Figure 7: In our curvilinear system of coordinates, the shape of

curved v axis depends on s (coordinate on u axis)

The curvilinear space C is a 2D parameterized space with one

dependent axis, defined over a slice of the deep image. The first

coordinate axis of C, called u, coincides with the horizontal

direction of the image plane. Consequently, s, a u coordinate, is

the horizontal component of some pixel from the given slice. The

second coordinate axis of C, called v, depends on s and is parallel

to Beziers - a Bezier curve that is a part of the cast ray, originated

at the pixel with the horizontal component, s (Figure 7). Thus a

point (s,t) in C can be mapped to the camera’s 3D point as:

�&, '� 	= 	&	(+ 	')	 = 	*!��!"+�'� (7)

Since we are only interested in points on the cast rays; C is

defined only over the domain of such (s,t) tuples such that s ∈ N, t

∈ R, and t is within the parameterization domain of Beziers.

To construct the quadtree in the space C, we recursively subdivide

the quadtree nodes until either the current node does not contain

any samples or some maximum depth is reached, as shown in the

pseudo-code below:

def buildBranch(deepImage, s0, s1, t0, t1, depth):

 if (depth < maxDepth):

 if (isEmptyArea(deepImage, s0, s1, t0, t1)):

 createLeaf (s0, s1)

 else:

 buildBranch(deepImage, s0, (s0+s1) / 2, t0,

 (t0+t1) / 2, depth+1)

 buildBranch (deepImage, s0, (s0+s1) / 2,

 (t0+t1)/2, t1, depth+1)

 buildBranch(deepImage, (s0+s1) / 2, t1, t0,

 (s0+s1)/2, depth+1)

 buildBranch(deepImage, (s0+s1) / 2, s1,

 (t0+t1)/2, t1, depth+1)

 else:

 createLeaf(s0, s1)

In isEmptyArea(), we first compute four corners, (s0, t0), (s0, t1),

(s1, t0), (s1, t1) in the camera space using (7) and obtain their z-

depth range zmin, zmax. We then multiply the corners by the image

view matrix, obtaining four pixel coordinates. Since these four

pixels all belong to the same slice, they should have the same

vertical component. Thus, on the image plane, we can construct a

bounding line that includes the four corners. Finally using the

deep pixel function, we check, in logarithmic time, to see if there

is at least one sample within the depth range zmin, zmax of any of

deep pixels lying on the bounding line. Thus, we can construct our

data structure without performing explicit line-line intersection

tests.

To streamline the traversing of the leaves, we alter the

conventional quadtree data structure, by requiring each leaf to

point only to its immediate neighbor(s) in the viewing direction.

After we initialize these pointers, we can reduce our memory

footprint of the data structure by deleting all branch nodes and

keeping pointers only to the first row of the leaves (Figure 8).

Also for each leaf, we store bounding coordinates in the

horizontal direction, smin and smax.

Figure 8: Example of quadtree data structure in curvilinear space

(left) and camera space (right). The arrows indicate pointers to

next neighbors in the viewing direction.

Taking advantage of Axis Aligned Bounding Box (AABB)

orientation of the leaves, we trace the curved rays through our

data structure. For each ray lij in the i-th slice we locate the seed

leaf, which is a leaf in the first row with bounding coordinates in

the horizontal direction, smin and smax, such that smin < j < smax.

(Since the leaves are sorted, locating the seed has logarithmic

complexity.) If the seed leaf contains samples, we accumulate

color as described in the previous section before proceeding with

the proper immediate neighbor with u range that contains j.

Otherwise, we skip the area covered by the current leaf and jump

to the next leaf in the viewing direction. If there is more than one

immediate neighbor, we compare the u ranges of each leaf and

select the proper one to proceed with. We keep repeating this step

advancing until either the accumulated opacity becomes one, or

we reach the boundary of our tree.

5 Results

We applied our method to the 2048 x 858 deep images that are

shown in Figure 9 and reflect a setup for a typical scene –

foreground and background object sets along with the ground

shared by both sets. Our data structure yielded a two times

speedup compared to the non-quadtree based implementation.

Due to accumulated opacity prior to reaching near2, 30% of the

cast rays did not need to cast through the blend region. About a

half of the remaining rays did not accumulate any color over the

blend region, and their color was controlled exclusively by the

second camera rig. The quadtrees for their slices had the

minimum depth, i.e. 1, which allowed us to skip the entire

transition region without explicit intersection tests. The remaining

cast rays had to travel across up to 20 deep pixels, but our

quadtree structure (with maximum depth 7) reduces the number of

explicit intersection tests on average to 3 per each ray. We build

and process quadtrees in parallel (one thread per slice). A full

composition of this example runs on a 16 core machine at 2.7

GHz per core with 64 GB RAM in 20 seconds.

Our work is inspired by real-world production needs and naturally

fits into the stereo layout artists’ workflow. It typically consists of

three main steps - (1) identifying objects of the interest at various

z-depths, (2) assigning stereoscopic parameters to achieve the

desired stereo volume at their depths, and (3) adjusting viewing

angles and camera clipping planes to hide discontinuities. Our

proposed solution simplifies the workflow by eliminating the third

step since now the user can blend between the desired stereo

settings. Figure 10 shows that a desired stereo volume for the

front tree makes the background castle look flat; while a stereo

volume needed to “inflate” the castle makes the tree appear too

close to the viewer, which causes extreme discomfort. If we apply

our algorithm to the overlapping area starting just past the first

foreground tree and ending before the castle’s wall, we achieve a

smooth transition between the stereo volumes (Figure 10 c).

6 Conclusion and Future Work

We have introduced a new method to perform seamless stereo

compositing without the requirement of clearly separable objects.

Composition is performed by bending cast rays from the viewing

direction of the first set of cameras to the viewing direction of

second rig. To ensure the practical value, we provided the user

with artistic control over the blending and accelerated the

algorithm with specialized quadtee data structure.

We have encountered several areas that we will address in future.

These areas include view-dependent shading, which is a general

problem for stereo and causes artifacts when specular highlight

register in only one eye. Another area has to do with quadtree

optimization for handling dense transition regions such as clouds

or smoke.

References

BROSZ, J., SAMAVATI, F., SHEELAGH, M., and SOUSA, M. 2007.

Single camera flexible projection. In the 5th international

Symposium on Non-Photorealistic Animation and Rendering,

pp. 33-42.

COLEMAN P., SINGH, K., BARETT, L., SUDARSANAM, N., and

GRIMM, C. 2005. 3D screen-space widgets for non-linear

projection. In the 3rd international Conference on Computer

Graphics and interactive Techniques in Australasia and South

East Asia, pp. 221-228.

FRUHAUF, T. 1994. Raycasting of Nonregularly Structured

Volume Data, Computer Graphics Forum (Eurographics'94),

pp. 294-303.

GROLLER, E. 1995. Nonlinear ray tracing: Visualizing strange

worlds. The Visual Computer, vol. 11, No. 5, pp. 263-274.

HOLLIMAN, N. 2004. Mapping perceived depth to regions of

interest in stereoscopic images. In SPIE, vol. 5291, pp. 117–

128.

HONG, L., and KAUFMAN, A. 1999. Fast Projection-Based Ray-

Casting Algorithm for Rendering Curvilinear Volumes. IEEE

Transactions on Visualization and Computer Graphics, vol 5,

pp. 322-332.

JONES, G., LEE, D., HOLLIMAN, N., and EZRA, D. 2001.

Controlling perceived depth in stereo-scopic images. In SPIE,

vol. 4297, pp. 42–53.

KOPPAL, S., ZITNICK, C., COHEN, M., KANG, S. B., RESSLER, B.,

and COLBURN, A. 2011. A viewer-centric editor for 3D movies.

IEEE CG&A, vol 31, issue 1, pp. 20–35.

KIM C., HORNUNG, A., HEINZLE, S., MATUSIK W., and GROSS M.

2011. Multi-perspective stereoscopy from light fields. In

SIGGRPAH Asia 2011, pp. 190:1-190:10.

LANG, M., HORNUNG, A., WANG, O., POULAKOS, S., SMOLIC, A.,

and GROSS, M. 2010. Nonlinear disparity mapping for

stereoscopic 3D. In SIGGRAPH 2010, pp 75:1-75:10.

LOKOVIC, T. and VEACH, E. 2000. Deep shadow maps. In

SIGGRAPH 2000, pp. 385-392.

MENDIBURU, B. 2009. 3D Movie Making: Stereoscopic Digital

Cinema from Script to Screen. Focal Press.

RAMAMOORTHY, S. and WILHELMS, J. 1992. An analysis of

approaches to ray-tracing curvilinear grids. Tech. Report

UCSC-CRL-92-07, University of California, Santa Cruz CA,

USA.

USELTON, S. 1991. Volume rendering for computational fluid

dynamics: initial results. Technical Report RNR-91-026, NAS-

NASA Ames Research Center, Moffet Field CA, USA.

WEISKOPF, D., SCHAFHITZEL, T., ERTL T. 2004. GPU-based

nonlinear ray tracing. In Computer Graphics Forum, vol 23,

issue 3, pp. 625-633.

(a)

(b)

(c)

Figure 9: Stereo renderings produced by the first and second stereo cameras are shown in (a) and (b). In (c), we see the composited

result of the overlapping region starting just after the foregroud semi-transparent sack and ending before the house, which exemplifies

handling of semitransparent objects

(a)

(b)

(c)

Figure 10: Using stereo settings of the first camera in (a) insure that the front object is at a comfortable viewing volume; though this

makes the background appear “flat”. The stereo settings of the second camera in (b) produces the desired stereoscopic volume for the

castle, but makes the front objects appear too close to the viewer. Applying our stereo-composition algorithm for the blending region,

starting just after the front tree and ending at the castle’s wall, we can produce a smooth transition between the two stereo volumes as

shown in (c).

