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Figure 1: Our compositing scheme, even when applied to stereo CG renderings with drastically different stereo settings (e.g. the left and 

middle renderings), still produces smooth transition from foreground to background regions as shown on the right. 

 
Abstract 
 
We present a new stereoscopic compositing technique that 

combines volumetric output from several stereo camera rigs. 

Unlike previous multi-rigging techniques, our approach does not 

require objects rendered with different stereo parameters to be 

clearly separable to prevent visual discontinuities. We 

accomplished that by casting not straight rays (aligned with a 

single viewing direction) but curved rays, and that results in a 

smooth blend between viewing parameters of the stereo rigs in the 

user-defined transition area. Our technique offers two alternative 

methods for defining shapes of the cast rays. The first method 

avoids depth distortion in the transition area by guaranteeing 

monotonic behavior of the stereoscopic disparity function while 

the second one provides a user with artistic control over the 

influence of each rig in the transition area. To ensure practical 

usability, we efficiently solve key performance issues in the ray-

casting (e.g. locating cell-ray intersection and traversing rays 

within a cell) with a highly parallelizable quadtree-based spatial 

data structure, constructed in the parameterized curvilinear space, 

to match the shape definition of the cast rays. 

CR Categories: I.3.3 [Picture/Image Generation]: Line and curve 

generation, Viewing algorithms, I.3.4 [Graphics Utilities]: 

Graphics editors, I.4.8 [Scene Analysis]: Stereo, I.4.10 [Image 

Representation]: Volumetric. 

Keywords: stereo, line and curve generation, viewing algorithms. 

 
 

1 Introduction 
 
Recent popularity of stereoscopic rendering in CG animation has 

led to increasing complexity of stereoscopic 3D films. Complex 

animation shots should not be restricted to a single stereo setup. 

We desire the ability to assign different stereo depths to different 

groups of objects in order to allow greater artistic flexibility and 

control of the stereoscopic 3D effect. This is generally 

accomplished with multi-rigging - rendering from different pairs 

of stereo cameras separately and then compositing the output 

together. The muti-rigging technique has been heavily employed 

in many feature films (e.g. “Meet the Robinsons” and “Beowulf”) 

[Mendiburu 09]. However, multi-rigging, as Mendiburu describes, 

has an important artistic limitation - it requires objects rendered 

with different stereo parameters to be clearly separatable with 

only empty space between them. If this requirement is not met, 

the output results in visual discontinuities. This tremendously 

limits the usefulness of multi-rigging since in many cases there 

are large common objects (e.g. secondary props) filling the space 

between the main sets of objects. The one of the most common 

objects that might be visible in several stereo rigs and 

consequently prevent from applying multi-rigging composition is 

a ground plane as shown in Figure 2. 

 

 
Figure 2: Traditional multi-rigging in results in visual 

discontinuities unless composited objects are separable. 

 
The goal of our method is to provide artistic freedom and 

eliminate the above restriction and thus increase the scope of 

multi-rigging in virtually any CG scene. It is accomplished by 

utilizing a type of volumetric data known as deep images and then 

casting rays, curved to guarantee the visual continuity between the 

stereo pairs. To ensure practical value, we also present a highly 

parallelizable, quadtree-based spatial data structure. The 

performance efficiency of this spatial data structure during ray-

casting comes from its construction, which is done in the 

parameterized curvilinear space defined by the casting-rays’ shape 



 

 

definition. By doing this, we effectively solve key performance 

issues of ray-casting, e.g. locating cell-ray intersection and 

traversing rays within a cell.  

 

The principal contributions of our paper are: (1) removal of the 

empty space restriction to ensure greater artistic freedom in multi-

rigging, (2) a compositing scheme that uses ray-casting to 

smoothly connect multiple stereo cameras in a multi-rig setup  

and (3) an optimized quadtree that delivers up to two times speed-

up for CG shots. 

 
2  Background and Related Work 
 
One of the key challenges that we face in compositing the output 

of multiple stereo rigs is producing a depth-coherent look. As we 

progress from one region to another, we need the ability to 

prescribe appropriate disparities in order to seamlessly bridge 

stereoscopic settings of the neighboring composited regions. 

Although this particular problem has not been addressed in the 

context of multi-rigging, disparity manipulation has been 

researched in a number of papers in various other contexts. Given 

a desired disparity range for the scene, Jones et al. compute the 

left-right camera separation for the optimum scene depth [2001], 

and Holliman calculates the stereoscopic camera parameters for 

the scene to obtain needed disparity in a given region of interest 

[2004]. Both works can be considered as scene planning 

approaches. In contrast, we post-process the output of the stereo-

rigs and respect users' stereo depth choices in the composited 

regions, allowing depth manipulation only in the overlapping 

regions to ensure seamless transition. Depth manipulation in post-

processing has been offered in a number of other approaches. For 

example, Koppal et al. describe a set of post-processing tools to 

achieve the desired disparity for the 2D images [2011] and Lang 

et al. provide a more advanced algorithm for smoothly warping 

2D images [2010]. Unfortunately, 2D image manipulation 

introduces distortion, and, as a result, some objects can appear 

unnaturally stretched and compressed.  In addition, approaches 

that are based on 2D image warping suffer from problems due to 

hole-filling issues and the lack of proper handling of semi-

transparency since the data behind opaque objects is not available. 

To avoid these problems, Kim et al. compute and modify disparity 

information based on volumetric input, using light fields [2011]. 

However, in a production environment, light fields can be more 

costly to produce than deep images, which are easily generated 

with production quality rendering packages such as Pixar's 

Renderman.  

 

Deep images have been primarily used in the rendering of high 

quality shadowing [Lokovic and Veach 2000]. However, now 

they are also commonly employed in final compositing, using 

software packages such as Nuke and Houdini. Sample-based deep 

images represent a rendering produced by a camera with the 

viewing direction aligned with z-axis and the image plane aligned 

with XY plane. A deep image is given as an N x M array of deep 

pixels Pn,m (see Figure 3). Each deep pixel is a collection of 

samples, sorted by their depth: 

 

Pn,m ={(c0, a0, z0), (c1, a 1, z1), ... };  z0 < z1 <... < zn 

 

where ci, ai, zi (i ∈ N) represent respectively a sample's color, 

opacity, and z-depth components along the ray emitted from the 

pixel with image coordinates (n, m). A complete set of all pixels 

from the same height m forms a slice Sm = {P0,m, P1,m, ..., Pn,m}. 

We define a deep image function I as a map from a deep pixel and 

bounding z depth range, [zstart, zend], to the subset of samples that 

contribute to this deep pixel:  

 

I(n, m, zstart, zend) = {(c, a, z) ∈ Pn,m | zstart ≤ z ≤ zend}  (1) 

 

To ensure that I has logarithmic time complexity, the samples are 

sorted by their z-values in each deep pixel. 

 

The central technique employed by our algorithm is the casting of 

curved rays through a volume. This area has been researched 

previously in the context of the creation of artistic effects and 

scene exploration. Groller and Weiskopf et al. traverse the curved 

cast rays directly in the physical space (P-space) [1995, 2004], 

which involves computationally heavy intersection tests of a 

curved cast ray with the geometrical primitives to find its entry 

and exit points. Coleman et al. offer, in addition to P-space based 

computations, an approach that is based on the computational 

space (C-space) [2005]. The definition of C-space ensures that the 

curved rays become straight and aligned with C-space's 

coordinate axis. Consequently, computations in C-space 

dramatically simplify ray-casting. However, translating the 

geometry into C-space, (e.g. resampling the geometry into the 

new-axis aligned grid structure) can lead to significant error. 

Another related area is casting straight rays through curved data. 

This area also has been addressed with P-space approaches [e.g. 

Uselton 1991, Ramamoorthy and Wilhelms 1992, Hong and 

Kaufman 1999] and C-space approaches that are based on 

“unbending” geometry, rather than rays [e.g. Fruhauf 1994].  In 

our ray-casting, we use both a P-space and a C-space based 

traversal. In a typical stereo composition setup, the overlapping 

volume between the two stereo-rigs’ regions is generally sparse 

(e.g. usually only includes a ground plane and some props); 

otherwise objects of the farthest region would be occluded. We 

exploit the sparse nature of our data and build a performance 

accelerating quadtree-like structure per each horizontal slice of 

the deep images in the overlapped area. The quadtree's cells are 

aligned with the coordinate axes of the curvilinear C-space, 

defined by the curved cast rays. Consequently, we can effectively 

skip all empty space as we follow our cast rays. In general, since 

resampling leads to sampling errors, we do not attempt to 

resample the input geometry into our curvilinear structure. 

Instead, we cast curved rays through non-empty leaves in P-space 

until the opacity reaches one. By doing this, we combine the 

advantages of both approaches. The C-space based ray traversal 

lets us quickly jump through regions without geometry while the 

P-space based traversal ensures that we do not compromise 

quality in areas where we have data. 

 
Figure 3: An example of a NxM deep image generated for 

perspective view (on the left) and a horizontal slice of the pixel 

stack (on the right) 
 

3 Deep Compositing Algorithm 

We start our discussion of the algorithm with the stereo setup and 

the problem definition. To ensure optical axis convergence, we 

shift the cameras’ image planes by a user provided Horizontal 



 

 

Image Translation (HIT) value, keeping the image planes 

perpendicular to the same viewing direction. We define the 

camera space with the origin at the mid-point of the left and right 

cameras' focal points. Our x-axis is given by the offset of the focal 

point of the right camera from the focal point of the left camera. 

The camera's viewing direction represents the direction of the z-

axis. The y-axis is given by the cross-product of the other two 

axes. Given two intersecting cast rays, originated at pixels with 

coordinates (iL, j) and (iR, j) on the left and right cameras' image 

planes on a slice j, disparity is computed at their intersection by 

subtracting the horizontal component of the right pixel from the 

horizontal component of the left one, i.e.  
 

disparity = iL – iR            (2) 
 

Thus along the viewing direction (i.e. the z-axis) the disparity 

progresses from negative to positive. Since the image planes of 

the camera rig are offset in the x direction, we have a constant 

disparity corresponding to any particular z-depth.  
 

Although our algorithm trivially extends to setups with an 

arbitrary number of stereo camera rigs, for the sake of simplicity 

we describe the algorithm for multi-rigs with two stereo pairs of 

cameras – Cam
L

1 / Cam
R

1, and Cam
L

2 / Cam
R

2 with focal points 

at FL
1, F

R
1, F

L
2, and FR

2 (see Figure 4).  Their corresponding deep 

images are given by the deep image functions IL
1, I

R
1, I

L
2, and I

R
2, 

as defined by (1). The user-specified inter-axial distances and HIT 

values of the cameras are set to ensure that Cam
L

1 / Cam
R

1 would 

produce a specific stereoscopic depth effect for foreground 

objects and Cam
L

2 / Cam
R

2 would output a different desired 

stereoscopic depth effect for background objects. The first stereo 

camera rig's rendering volume, bounded by the near1 and far1 

clipping z-planes, overlaps with the second stereo rig’s volume, 

bounded by the near2, far2 clipping z-planes (i.e. near1 < near2 < 

far1 < far2), thus forming the overlap region between near2 and 

far1 z-planes. We assume that our multi-rig system is disparity-

consistent, meaning that the stereo disparity of the first rig at the 

near2 z-depth is less than the stereo disparity of the second rig at 

the far1 z-depth. 

 

 
Figure 4: Setup for two stereo camera rigs 

 

Our goal is to produce two 2D rgb images that are the composited 

result of the left and right views. Conceptually, we need to merge 

three volumetric regions (for each view) – (1) the near1 - near2 

region, solely controlled by the first pair of the deep images, (2) 

the near2 - far1 overlapping (blending) region, and (3) the far1 - 

far2 region, derived from the second pair of deep images. It is 

crucial that the overlapping blending regions be defined as a 

seamless transition between the first pair of the deep images and 

the second. In addition, the user should have intuitive controls to 

art-direct the behavior in the blending region, by prescribing the 

influence of each camera pair. Without losing generality, we 

derive construction of a composite for the left view; the right view 

can be analogously produced. 

In our method, we utilize conventional ray-casting, where the rays 

are cast along the viewing direction. For each pixel (i, j) of the 

output 2D image, color ci,j is accumulated along ray li,j, in the 

viewing, direction as 
 

 

 

��,� 	= 	 �	�	 +	�1 −	�	�	���� + 

																		�1	 − 	�1 −	�	�	���	��	��	+	. .. 
 

(3) 

where: (c0, a0), (c1, a1), (c2, a2), ... are respectively opacity and 

color components of samples located along li,j  and sorted by their 

z-depth components: z0, z1, z2, ... In our case the viewing direction 

is not well defined since the viewing direction of the same deep 

pixel (i, j) is different for the first and second deep images. Thus 

the key challenge of solving (3) is to determine Tnear1, far2, a set of 

sample triplets (c, a, z) along a cast ray li,j between near1 and far2 

 

������,���� 	= 	 {��	, �	, �	�, ���	��, ���, . . . } (4) 

  

where near1< �	, �� , ... < far2. Tnear1, far2 can be subdivided into 

three subsets Tnear1, near2,  Tnear2, far1, T far1,far2, based on the near1, 

near2, far1, far2 z-depths. Since the region bounded by near1 and 

near2, is controlled solely by the first deep image li,j , it can be 

represented as a straight line segment aligned with the viewing 

direction of deep pixel (i, j) of the first deep image. Consequently  

the samples can be obtained by locating the deep pixel's samples 

with z-components between near1 and near2, i.e. Tnear1,near2 = IL
1(i, 

j, near1, near2). Analogously in the far1-far2 region, Tfar1,far2= 

I
L

2(i, j, far1, far2). Therefore (4) can be rewritten as 

 

 

������,���� = 	 ��
���, �,  !�"�,  !�"�� 

																								∪ 	������,���� ∪ 	�$
���, �, %�"�, %�"��  

 

(5) 

Thus determining T near1, far2 reduces to finding T near2, far1. 

 

3.1 Shape Definition of Cast Ray 
 
One possible alternative for defining the shape of li,j in the 

blending region is to represent it as a straight line segment that 

connects the end of li,j portion in the near1-near2 region and the 

beginning of li,j portion in the far1-far2 region. Thus a sample P on 

li,j in the blending region could be computed using a simple linear 

interpolation: 

 

P = (1 - t) * C0 +t * C1    (6) 

 

where C0 is the intersection of li,j with near2 z-plane, C1 is the 

intersection of li,j with far1  z-plane, t is float parameter between 0 

and 1 (Figure 5a).  

 

In order to produce a believable stereoscopic visualization, we 

need to ensure that the disparity function is monotonically 

increasing in the viewing direction, (i.e. along the casting rays). 

Disparity naturally increases in the first and the last regions since 

each of them are based on a single pair of stereo cameras and thus 

the standard stereoscopic rendering rules are applied. Since the 

disparity function (2) is monotonic and the monotonic behavior is 

invariant under affine transformation (6), the resulting disparity in 



 

 

the blending region is monotonic. Its increasing nature comes 

from the stereo rig being disparity-consistent (i.e.  the disparity of 

the first rig at near2 is less than the second rig’s disparity at  far1).  

 

Unfortunately, the drawback of the linear definition of li,j is that it 

introduces visual seams on the boundaries of the blending region 

as seen in Figure 6. To avoid these seams and ensure smooth 

transition between the regions, we use a higher degree 

polynomial. Inside the blending region we define li,j using a cubic 

Bezier curve, which lies on the plane of the j-th slice of the deep 

images. To ensure C0 continuity along li,j, we place the curve's 

first control vertex C0 at the intersection of li,j with near2  z-plane. 

To preserve C1 continuity at near2, where li,j transitions into the 

blending region, we offset the second control vertex C1 from C0 in 

the viewing direction of the deep pixel of the first camera. The 

other two control vertices, C2 and C3, are similarly defined. 

(Figure 5b). To enforce monotonic behavior of li,j in the z-

direction, we require C1.z < C2.z, (and thus the control vertices 

remain in ascending order along the z-depth).  

 

 
Figure 6: The linear and curvilinear schemes are applied to 

composite the right cameras’ view of a planar surface textured 

with line segments. Transition area boundaries, clearly revealed 

in the linear composition (top), are not present when the 

curvilinear scheme is applied (bottom) 

 
Our algorithm calculates the positions of the control vertices for 

each cast ray. However, to guarantee a consistent appearance 

across all rays, the same ratio |C0C1| / |C2C3| is used in all control 

point calculations. The significance of this ratio is that it describes 

the cameras’ influence relative to each other since  C0C1 and  

C2C3 represent the viewing directions of the pixel in the two deep 

images. By letting users prescribe the desired ratio, we provide 

them with artistic control over the blending of the composite. The 

shape of the cubic Bezier curve approaches the linear 

interpolation equation as the lengths of C0C1 and C2C3 segments 

shrink. By scaling up and down the segments’ length, the user can 

balance between the monotonically increasing disparity and 

transition smoothness. 

 
3.2 Sampling along Cast Ray 
 

Actual sampling along the ray's path in the blending region is 

based on discretization of li,j in terms of deep pixel sample 

intervals.  Let li,j intersect k1 deep pixels of the first deep image 

and k2 deep pixels of the second deep image in the blending 

region; then li,j encounters the following sets of samples in the 

first and second deep images respectively: 

 

T
(1)

 near2, far1 = IL
1(i, j, near2, z0) ∪ IL

1(i-1, j, z0, z1) ∪ ...                          

∪ IL
1(i- k1, j, zk1-1, far1) 

T
(2)

 near2,far1 = IL
2(i + k2, j, near2, z0) ∪ IL

2(i+k2 - 1, j, z0, z1) ∪	...     

∪ IL
2(i, j, zk2-1, far1) 

 

where zi (i ∈{0,..., k1-1}) and zj (j ∈{0,..., k2-1}) are the z 

components of intersection points of li,j with the boundaries of the 

deep pixels' cones in the first and second images respectively 

(Figure 5c). Although most of the length of li,j is in the bounding 

volumes of both images, small portions of li,j adjacent to near2 

and far1 might lie only in one of the two deep images. That 

typically happens when (i+k2) is greater than the horizontal 

resolution N of the deep image, or (i-k1) is less than zero. In these 

cases, samples will be used only from the single corresponding 

deep image. While traversing the ray’s regions that lie in the 

overlapping portions of the bounding volumes of the deep images, 

we collect samples from both images and blend them based on 

their location relative to near2 and far1. We ensure that advancing 

along li,j from near2  to far1, the first deep image loses its influence 

and the second one gains influence. This is handled by the 

interpolation functions f1(a, z) and f2(a, z) that modify opacities of 

the samples of the first and second deep images respectively: 
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Figure 5: Cast rays’ shapes can be defined based on linear interpolation (a) which guarantees monotonic disparity  or a higher degree 

polynomial (b) which provides smooth transition. Samples along cast rays come from both volumes, except areas outside the frustum (c). 

 



 

 

 








≥+

<+

−

−
•

=

Nkiifa

Nkiif
nearfar

zfar
a

zaf

i

i

2

2

21

1

2 ),(   

 

Thus Tnear2,far1 needed for (5) can be defined as a set of T(1)
near2, far1 

and T(2)
near2,far1 samples with modified opacities: 

 

Tnear2,far1 = { c, f1(a), z) | (c, a, z) ∈ T(1)
near2,far1 }  

                ∪  { c, f2(a), z) | (c, a, z) ∈ T(2)
near2,far1 } 

  

4 Implementation using Curvilinear Quadtrees  

In our implementation, since samples are already pre-sorted inside 

their deep pixels, looking them up for a particular z-range is a fast 

operation with logarithmic complexity and does not involve any 

expensive arithmetic. However, if the stereoscopic parameters of 

the composited regions are vastly different, and the input deep 

images have high resolution, each ray li,j has to be cast through a 

large number of deep pixels, which results in a significant number 

of intersection tests between li,j and the deep pixels' boundaries. 

Consequently, in these cases, the large number of intersection 

tests becomes a performance issue. We observe that in practice 

the first stereo camera is aimed at the near objects, while the 

second camera is aimed at the background objects, and there is a 

relatively large volume of empty space between them. Thus the 

vast majority of the deep pixels’ regions that the rays cross are 

empty. Therefore a significant portion of the intersection tests do 

not contribute directly to the resulting color of a rasterized pixel.  
 

To take advantage of this observation, we present a performance 

acceleration data structure specifically aimed to detect and skip 

empty areas along ray paths. Our data structure, built for each 

slice of the deep image, is a variation of a quadtree, which has 

been optimized for traversing rays in the viewing direction. To 

reduce the curved ray/deep-pixel intersection tests to simple float-

comparison operations, we construct our data structure in 

curvilinear space C where the curved rays become straight lines. 

 

 
Figure 7: In our curvilinear system of coordinates, the shape of 

curved v axis depends on s (coordinate on u axis) 
 

The curvilinear space C is a 2D parameterized space with one 

dependent axis, defined over a slice of the deep image. The first 

coordinate axis of C, called u, coincides with the horizontal 

direction of the image plane. Consequently, s, a u coordinate, is 

the horizontal component of some pixel from the given slice. The 

second coordinate axis of C, called v, depends on s and is parallel 

to Beziers - a Bezier curve that is a part of the cast ray, originated 

at the pixel with the horizontal component, s (Figure 7).  Thus a 

point (s,t) in C can be mapped to the camera’s 3D point as: 
 

�&, '� 	= 	&	(	 + 	'	)	 = 	*!��!"+�'�   (7) 
 

Since we are only interested in points on the cast rays; C is 

defined only over the domain of such (s,t) tuples such that s ∈ N, t 

∈ R, and t is within the parameterization domain of Beziers.  

 

To construct the quadtree in the space C, we recursively subdivide 

the quadtree nodes until either the current node does not contain 

any samples or some maximum depth is reached, as shown in the 

pseudo-code below: 
 

def buildBranch( deepImage, s0, s1, t0, t1, depth ): 

  if ( depth < maxDepth ):  

       if ( isEmptyArea( deepImage, s0, s1, t0, t1 )): 

            createLeaf (s0, s1)    

      else: 

           buildBranch( deepImage, s0, ( s0+s1 ) / 2, t0,    

                                ( t0+t1 ) / 2, depth+1 ) 

           buildBranch ( deepImage, s0, (s0+s1 ) / 2,  

                                 ( t0+t1 )/2, t1, depth+1 ) 

           buildBranch( deepImage, ( s0+s1 ) / 2, t1, t0,  

                               ( s0+s1 )/2, depth+1 ) 

           buildBranch( deepImage, ( s0+s1 ) / 2, s1,  

                                 (t0+t1 )/2, t1, depth+1 ) 

   else: 

          createLeaf( s0, s1 ) 

 

In isEmptyArea(), we first compute four corners, (s0, t0), (s0, t1), 

(s1, t0), (s1, t1) in the camera space using (7) and obtain their z-

depth range zmin, zmax. We then multiply the corners by the image 

view matrix, obtaining four pixel coordinates. Since these four 

pixels all belong to the same slice, they should have the same 

vertical component. Thus, on the image plane, we can construct a 

bounding line that includes the four corners. Finally using the 

deep pixel function, we check, in logarithmic time, to see if there 

is at least one sample within the depth range zmin, zmax of any of 

deep pixels lying on the bounding line. Thus, we can construct our 

data structure without performing explicit line-line intersection 

tests. 
 

To streamline the traversing of the leaves, we alter the 

conventional quadtree data structure, by requiring each leaf to 

point only to its immediate neighbor(s) in the viewing direction. 

After we initialize these pointers, we can reduce our memory 

footprint of the data structure by deleting all branch nodes and 

keeping pointers only to the first row of the leaves (Figure 8). 

Also for each leaf, we store bounding coordinates in the 

horizontal direction, smin and smax.  
 

 

Figure 8: Example of quadtree data structure in curvilinear space 

(left) and camera space (right). The arrows indicate pointers to 

next neighbors in the viewing direction. 
 

Taking advantage of Axis Aligned Bounding Box (AABB) 

orientation of the leaves, we trace the curved rays through our 

data structure. For each ray lij in the i-th slice we locate the seed 

leaf, which is a leaf in the first row with bounding coordinates in 

the horizontal direction, smin and smax, such that smin < j < smax. 



 

 

(Since the leaves are sorted, locating the seed has logarithmic 

complexity.)  If the seed leaf contains samples, we accumulate 

color as described in the previous section before proceeding with 

the proper immediate neighbor with u range that contains j. 

Otherwise, we skip the area covered by the current leaf and jump 

to the next leaf in the viewing direction. If there is more than one 

immediate neighbor, we compare the u ranges of each leaf and 

select the proper one to proceed with. We keep repeating this step 

advancing until either the accumulated opacity becomes one, or 

we reach the boundary of our tree.  
 

5 Results  
 

We applied our method to the 2048 x 858 deep images that are 

shown in Figure 9 and reflect a setup for a typical scene – 

foreground and background object sets along with the ground 

shared by both sets. Our data structure yielded a two times 

speedup compared to the non-quadtree based implementation. 

Due to accumulated opacity prior to reaching near2, 30% of the 

cast rays did not need to cast through the blend region. About a 

half of the remaining rays did not accumulate any color over the 

blend region, and their color was controlled exclusively by the 

second camera rig. The quadtrees for their slices had the 

minimum depth, i.e. 1, which allowed us to skip the entire 

transition region without explicit intersection tests. The remaining 

cast rays had to travel across up to 20 deep pixels, but our 

quadtree structure (with maximum depth 7) reduces the number of 

explicit intersection tests on average to 3 per each ray. We build 

and process quadtrees in parallel (one thread per slice). A full 

composition of this example runs on a 16 core machine at 2.7 

GHz per core with 64 GB RAM in 20 seconds.  

 
Our work is inspired by real-world production needs and naturally 

fits into the stereo layout artists’ workflow. It typically consists of 

three main steps - (1) identifying objects of the interest at various 

z-depths, (2) assigning stereoscopic parameters to achieve the 

desired stereo volume at their depths, and (3) adjusting viewing 

angles and camera clipping planes to hide discontinuities. Our 

proposed solution simplifies the workflow by eliminating the third 

step since now the user can blend between the desired stereo 

settings. Figure 10 shows that a desired stereo volume for the 

front tree makes the background castle look flat; while a stereo 

volume needed to “inflate” the castle makes the tree appear too 

close to the viewer, which causes extreme discomfort. If we apply 

our algorithm to the overlapping area starting just past the first 

foreground tree and ending before the castle’s wall, we achieve a 

smooth transition between the stereo volumes (Figure 10 c). 

 

6 Conclusion and Future Work 

 
We have introduced a new method to perform seamless stereo 

compositing without the requirement of clearly separable objects. 

Composition is performed by bending cast rays from the viewing 

direction of the first set of cameras to the viewing direction of 

second rig. To ensure the practical value, we provided the user 

with artistic control over the blending and accelerated the 

algorithm with specialized quadtee data structure.  

 

We have encountered several areas that we will address in future. 

These areas include view-dependent shading, which is a general 

problem for stereo and causes artifacts when specular highlight 

register in only one eye. Another area has to do with quadtree 

optimization for handling dense transition regions such as clouds 

or smoke.  
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Figure 9: Stereo renderings produced by the first and second stereo cameras are shown in (a) and (b). In (c), we see the composited 

result of the overlapping region starting just after the foregroud semi-transparent sack and ending before the house, which exemplifies 

handling of semitransparent objects 
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(c) 

 

Figure 10: Using stereo settings of the first camera in (a) insure that the front object is at a comfortable viewing volume; though this 

makes the background appear “flat”. The stereo settings of the second camera in (b) produces the desired stereoscopic volume for the 

castle, but makes the front objects appear too close to the viewer. Applying our stereo-composition algorithm for the blending region, 

starting just after the front tree and ending at the castle’s wall, we can produce a smooth transition between the two stereo volumes as 

shown in (c). 


