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Figure 1: An example of output from our system: texture-mapped hand-drawn cartoon enhanced by 3D-like effects.

Abstract

We present a novel and practical texture mapping algorithm for
hand-drawn cartoons that allows the production of visually rich an-
imations with minimal user effort. Unlike previous techniques, our
approach works entirely in the 2D domain and does not require the
knowledge or creation of a 3D proxy model. Inspired by the fact
that the human visual system tends to focus on the most salient fea-
tures of a scene, which we observe for hand-drawn cartoons are the
contours rather than the interior of regions, we can create the illu-
sion of temporally coherent animation using only rough 2D image
registration. This key observation allows us to design a simple yet
effective algorithm that significantly reduces the amount of man-
ual labor required to add visually complex detail to an animation,
thus enabling efficient cartoon texturing for computer-assisted an-
imation production pipelines. We demonstrate our technique on a
variety of input animations as well as provide examples of post-
processing operations that can be applied to simulate 3D-like ef-
fects entirely in the 2D domain.
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1 Introduction

Texture mapping is a classic Computer Graphics technique for effi-
ciently adding detail and richness to 3D models without increasing
the geometric complexity. In contrast, traditional 2D animation re-
quires any texture to be hand-drawn by artists in every single frame
of the animation (see Fig. 2), resulting in a very labor-intensive and
often tedious task. It thus seems natural to borrow the concept of
texture mapping of 3D models and apply it to 2D cartoon anima-
tions.

Figure 2: Examples of cartoon images with hand-drawn textures.

Unfortunately, there are two key obstacles inherent in cartoon an-
imations that prevent the direct application of texture mapping to
this domain. First, in order to texture map an animated object, cor-
respondences must be established between object points across all
frames of the animation. This correspondence ensures that each
sample of a texture is consistently mapped to the same surface lo-
cation through time. This requirement is trivial for a 3D animation
due to the fact that the textured object in each frame is a single
model that has been deformed and/or transformed and maintains
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Figure 3: Visual saliency of the textures. The top row contains example cartoon texture and contour samples. The bottom row visualizes
saliency maps automatically predicted using a bottom-up model of human visual attention. (a, b, c) Examples of textures supported by the
proposed technique. (d) A texture with strong features that exhibits relatively high visual saliency and therefore less suitable input for our
technique. (e, f, g, h) Cartoon contours are visually much more salient than textures, and thus efficiently mask possible inconsistencies in
texture registration.

the same topology. In traditional cartoon animation, an object is
drawn each frame by hand and therefore lacks any explicit geom-
etry or structure that would allow texture mapping to be used in
the same way. For this reason, correspondences must be defined
explicitly. Unfortunately, it is often the case that a one-to-one cor-
respondence between all points of all frames does not exist. This
occurs, for example, when parts of the cartoon become occluded or
revealed in different frames, resulting in topological changes in the
drawing.

The second issue is that in cartoons, even if correspondences are
known, the difficult inverse problem of recovering a 3D model from
its artistic projection needs to be solved in order to use existing
texture mapping algorithms. These two key obstacles prevent the
widespread usage of texture mapping in traditional cartoon anima-
tion. This limits artists to use only simple techniques such as ho-
mogeneous colors, flat and static noise textures, or tedious manual
drawing and painting of details for every frame.

To tackle these problems, previous methods [Corrêa et al. 1998;
Ono et al. 2004; Chen et al. 2005] have focused on user-assisted
texturing of cartoons based on an underlying 3D model which is
either provided by the user or derived semi-automatically. These
approaches require significant user-intervention and only support a
narrow class of input shapes. We introduce a new technique for
texturing cartoons that is easy to use, requires minimal user effort,
and is applicable in a more general context than existing methods
based on 3D proxies.

Our work is inspired by techniques for lossy video compression
that leverage visual masking [Leung and Taubman 2009]. These
approaches exploit the fact that the human visual system (HVS)
tends to focus on visually salient regions, while devoting signifi-
cantly less attention to other, less visually important, areas of the
scene [Yarbus 1967; Itti 2000]. Our key observation is that for 2D
animation, the salient features are the stroke contours, the structure
and motion of which the HVS spends most of its time observing.
Textures used in cartoons are typically less salient and thus attract
considerably less attention [Walther and Koch 2006; Guo et al.
2008] (see Fig. 3). This fact motivated us to produce the illusion
of temporal coherence using only rough image registration. Such
an approximation can be easily computed by working directly with
the 2D cartoons without the need for a corresponding 3D model.
This greatly simplifies the task of texturing a hand-drawn anima-
tion while still producing visually compelling results.

2 Related work

Previous approaches to cartoon texturing rely on the existence of
a 3D proxy. Corrêa et al. [1998] propose a solution that requires

the user to provide a 3D model that approximates the geometry de-
picted in the 2D drawing. In addition, the user must manually spec-
ify the correspondence between the model and the drawing. The
model is deformed in each frame, such that its projection matches
the drawing. The texture coordinates are then transferred from the
3D model to the drawing. Although this method works nicely on
simple shapes, it is not applicable to more complicated cartoons,
such as those shown in Fig. 1, for which the creation of a 3D proxy
model and specification of correspondences would be a time con-
suming task.

Ono et al. [2004] and later Chen et al. [2005] attempt to mitigate
these problems by automating the creation of the 3D model us-
ing a sketch-based modeling tool similar to Teddy [Igarashi et al.
1999]. This tool allows the user to quickly create 3D proxy meshes
with consistent triangulations by inflating a blobby surface whose
boundary points lie on the cartoon’s silhouette. However, this tech-
nique is applicable only to a limited set of cartoons whose shape
can be approximated by inflation. Furthermore, extensive user in-
tervention is still necessary in order to specify feature strokes and
their correspondences.

Recently, Winnemöller et al. [2009] proposed a texture design and
draping framework which utilizes diffusion curves [Orzan et al.
2008] and parallax mapping [Kaneko et al. 2001] to produce tex-
tured hand-drawn images with 3D-like shading and texture round-
ing effects. Although for static images this approach can provide
visually comparable results to ours it is not suitable for hand-drawn
cartoon animations as it requires extensive manual intervention
when specifying diffusion curves and suffers from texture sliding
artifacts caused by parallax mapping.

Our primary goal is to add visual richness to sequences of line draw-
ings. This is similar in concept to non-photorealistic rendering tech-
niques for stylization, such as: coherent dynamic canvas [Cunzi
et al. 2003], solid textures [Bénard et al. 2009], dynamic 2D pat-
terns [Breslav et al. 2007] and noise primitives [Bénard et al. 2010].
However, these applications assume that the correspondences are
known and thus the registration computation is not required.

2.1 Image registration

A principal aspect of our algorithm is the extraction of dense corre-
spondences between hand-made drawings. There has been a large
body of research on image registration in recent years (see [Zitová
and Flusser 2003] for a review). However, most of these tech-
niques are not suitable for our task since they model the differ-
ences between images based on phenomena common in real world
photographs, such as local consistency, projective distortion caused
by camera motion, and subtle elastic deformations. Hand-drawn
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Figure 4: Automatic painting using LazyBrush: (a) original drawing F1 with color scribbles S1, (b) segmentation R1 of F1 using scribbles
S1, (c) painted drawing (F1 + R1), (d) initial overlap of the source F1 with scribbles S1 and the target frame F2, (e) registration of the
source frame F1 with the target frame F2, and transfer of scribbles S1 using as-rigid-as-possible deformation field W12, (f) painted drawing
(F2 +R2) using transferred scribbles W12(S1).

cartoons, on the other hand, exhibit very different properties. For
example, they may contain large, non-realistic deformations and
abrupt structural changes. Thus, we focus primarily on related work
targeted for cartoon drawings.

Early approaches to cartoon registration were motivated by the ap-
plication of “auto-painting”: transferring color information from
painted exemplars to yet unpainted drawings. Many of these tech-
niques segment the input image into a few separate regions and
use shape similarity [Madeira et al. 1996], topology [Sýkora et al.
2005], stroke semantics [Kort 2002], hierarchies [Qiu et al. 2005],
or skeletons [Qiu et al. 2008] to estimate correspondences between
different regions. However, these techniques do not provide the
dense correspondences needed for our approach since they are un-
necessary for the auto-painting problem.

Another application for cartoon registration is cartoon motion cap-
ture, introduced by Bregler et al. [2002]. In this work, they extract
a part of a cartoon, analyze its deformation as a non-linear func-
tion of a few chosen key frames, and then transfer this deformation
to a different shape. Registration is required to track the extracted
part across frames. However, because only the contour is tracked,
no dense registration can be extracted from this process. This ap-
proach has been recently extended by Jain et al. [2009; 2010] who
directly use hand-drawn skeletons to transfer artistic motion from a
cartoon drawing to a three-dimensional shape. Although these tech-
niques might be helpful for improving a cartoon texturing scheme
based on 3D models such as [Corrêa et al. 1998], they are again not
suitable for our task.

Shape contexts [Belongie et al. 2002], which have been primarily
used for the registration of photographs, have recently been adopted
for cartoon drawings. Zhang et al. [2009] apply shape contexts for
coherent vectorization of hand-painted cartoon animation, whereas
Xu et al. [2008], in an application which is closer in spirit to ours,
use shape contexts for creating compelling animal motion from sev-
eral poses extracted from a single photograph. Unfortunately shape
contexts suffer from over-fitting, and thus can easily introduce un-
natural distortion when occlusions or topological changes occur.

The most suitable techniques for our application are those that at-
tempt to establish a dense deformation field between images. It has
been shown that even a simple affine model can produce a reason-
able approximation [Xie 1995]. De Juan and Bodenheimer [2006]
use a more flexible free-form deformation model in their frame-
work for segmentation and inbetweening. However, they use an
elasticity-based model [Wirtz et al. 2004], which requires manual
initialization and parameter tuning to avoid over-fitting.

Temporally coherent painterly renderings in the styles of oil [Hays
and Essa 2004] and watercolor [Bousseau et al. 2007] paintings

also require dense correspondences. However, such methods use a
simple optical flow estimation suitable for temporally smooth im-
age sequences such as live-action videos, but not for hand-drawn
cartoon animations where the motion tends to be more rapid and
concentrated in areas with outlines. Because the optical flow al-
gorithm relies on tracking features, the absence of texture inside
the homogeneous regions of a drawing would pose a considerable
challenge.

In summary, most existing registration techniques either target car-
toon images but compute only sparse correspondences, create dense
correspondences but are only suited to real-world photographs,
or are prone to over-fitting. Our framework instead builds upon
the recent image registration algorithm proposed by Sýkora et
al. [2009a], which is well suited for cartoons, provides dense corre-
spondences, and relies on the robust as-rigid-as-possible deforma-
tion model proposed by Alexa et al. [2000].

3 Toon texturing

Our main goal is to generate an animation of “rendered” cartoons
from a set of unpainted hand-drawn frames. The “geometry” of the
cartoon is given by the hand-drawn strokes, whereas the “appear-
ance” – colors, texture and lighting effects – are added automati-
cally during the “rendering” process.

The input to our system is scanned hand-painted animation frames,
hence the first step in our “rendering” pipeline is to assign colors
to different parts of the cartoon. To do that we use the LazyBrush
algorithm [Sýkora et al. 2009b] which allows an artist to quickly
specify desired regions using a small number of color “scribbles”.
See Fig. 4a-c for an example of scribble-based painting.

Next, we need to make sure the painting is temporally coher-
ent across all animation frames. This is the well-known “auto-
painting” scenario. To avoid specifying the scribbles repeatedly
for all frames, we use as-rigid-as-possible (ARAP) image registra-
tion [Sýkora et al. 2009a]. This method allows us to register the
first frame to the following frame, transfer the color “scribbles”,
and finally use the LazyBrush algorithm to obtain the segmentation.
See Fig. 4d-f for an example of color transfer. As the LazyBrush
algorithm is robust to imprecise positioning of scribbles, small mis-
matches in the registration are allowed. However, for scenes where
detailed painting is required (e.g., many small regions with different
colors), the user may need to specify additional correction scribbles
to keep the segmentation consistent.

A simple solution to the texturing problem would be to follow a
similar route, where instead of specifying a single color value per
region, the user would specify a texture. In this case, instead of all
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Figure 5: Domain overlap and texture transfer: (a) segmentation R1 deformed by W12, (b) domain overlap visualised by symmetric difference
of deformed segmentation R1 and R2, (c) segmentation R2, (d) source frame F1 with textured regions rt ∈ R1 mapped using initial texture
coordinates T1, (e) textured regions rt ∈ R1 mapped by deformed texture coordinates W12(T1), (f) target frame F2 with textured regions
rt ∈ R2 mapped using deformed and extrapolated textures coordinates T2,

pixel values having the same color, the pixel value will be taken
from a predefined texture. Since the drawing is two dimensional,
we can use the identity as the texture coordinates for the first frame.
However, for the texture to avoid the well-known “shower door”
effect, the texture coordinates cannot be the identity for all frames:
the texture coordinates of a point on any frame should match the
coordinates of its corresponding point in the original frame. Our
goal is to deform the textured region from the original frame to
match its corresponding regions in subsequent frames.

To further complicate matters, not every point in a given frame
has corresponding points in all other frames due to occlusions and
changes of orientation. Fig. 5b shows the symmetric difference be-
tween the deformed regions of the source frame and the correspond-
ing regions of the target frame. Notice in particular the differences
between the deformed regions of the jacket and hair. Specifying
the texture coordinates in the first frame is in fact not enough to
generate texture coordinates for all other frames. Hence, we opt
for the simple approach of extrapolating the unknown data from the
known. Given the texture coordinates which we know (as they were
transferred from the source frame), we extrapolate them to compute
the texture coordinates in the regions which do not overlap with the
transferred regions.

3.1 Algorithm

Our “rendering” pipeline is summarized in Figs. 4 and 5. For ren-
dering a single frame F1, we need its color scribbles S1 (Fig. 4a),
its segmentation into regions R1 (Fig. 4b), and the texture co-
ordinates for the textured regions T1 for every textured region
rt ∈ R1 (Fig. 5d).

The scribbles S1 of the starting frame F1 are supplied by the user,
and the texture coordinates T1 are the identity. Given this informa-
tion, the frame will be colored and textured as follows: by applying
LazyBrush [Sýkora et al. 2009b], every color scribble si ∈ S1 pro-
duces a region ri ∈ R1, assigning it either a homogeneous color c,
or a texture t. The textured region rt is painted by picking the col-
ors from a predefined texture, using the given texture coordinates
T1.

To render the target frame F2, given the additional information from
the source frame F1 we proceed as follows. First, we register the
frames using [Sýkora et al. 2009a], as shown in Fig. 4d-e. This pro-
duces the deformation map W12, which assigns every pixel in R1

to a pixel location in the frame F2. Next, we use W12 to map the
scribbles S1 to S2 and generate a segmentation of the target frame
R2 using LazyBrush as shown in Fig. 5c. Finally, Fig. 5e, we use
W12 again, this time to deform the texture coordinates T1 of all the
textured regions. However, as discussed previously, there is a mis-

match between the image of W12(R1), and its matching segmented
regions R2 (see Fig. 5b). We therefore extrapolate the coordinates
W12(T1) for the region where they are not known, resulting in the
new texture coordinates T2. Now that all the information for the
new frame is available to us, we can color and texture it as dis-
cussed before (Fig. 5f).

3.2 Implementation details

In this section we describe technical details of ARAP registration
and texture coordinate transfer and extrapolation.

ARAP Registration. The registration step is an important part
of our pipeline, as its output drives the rest of the components.
In general, we follow the original ARAP image registration algo-
rithm [Sýkora et al. 2009a], generating a dense uniform sampling
of the source frame, and deforming it in an as-rigid-as-possible
manner so that the feature lines align with the target frame. To
improve its robustness we compute a distance field from feature
lines [Borgefors 1986] and do the registration of the textured re-
gions separately which helps to improve the accuracy when topol-
ogy changes and occlusions occur.

Although in most cases the automatic registration yields good re-
sults, sometimes a quick user interaction can improve the accuracy
considerably. Thus, we allow the user to pin and drag-and-drop
several control points during the automatic registration process to
guide the algorithm towards a better result. These control points are
easily incorporated into the ARAP deformation scheme by setting
high weights for them during the optimization process, effectively
causing them to behave as soft or hard positional constraints.

UV Transfer and Extrapolation. The goal in this step is to gen-
erate texture coordinates for all of the points inside the textured re-
gions. For that, we require the inverse mapping of all points in our
current frame back to the first frame. However, as mentioned previ-
ously, the deformation map W12 is not onto, hence there are points
in the current frame for which we do not have an inverse map. To
solve this issue, we first transfer the texture coordinates to the cur-
rent frame using W12. Then, for each remaining un-mapped point
in a textured region rt ∈ R2, we compute its texture coordinate
value as a linear combination of existing values, using the thin-
plate spline interpolation [Bookstein 1989]. To avoid distortions
caused by using Euclidean distances, an approximation of geodesic
distances can be used [Zhu and Gortler 2007] for which several fast
algorithms exist [Yatziv and Sapiro 2006].
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Figure 6: 3D-like effects: (a) depth map with Dirichlet (red) & Neumann (blue) boundary conditions, with initial texture mapping, (b) shad-
ing, (c) simulation of ambient occlusion, (d) shading with ambient occlusion, (e) texture mapping using flat UV coordinates, (f) texture
rounding based on shading, (g) texture rounding with ambient occlusion, (h) texture rounding with shading & ambient occlusion.

3.3 Extensions

The presented framework meshes nicely with existing schemes for
adding richness to cartoon drawings, and allows for additional ex-
tensions and improvements. First, the initial texture need not be a
flat one. In fact, as we are basing our framework on an image defor-
mation machinery, it is easy to allow the user to deform the initial
texture coordinates. Other variations in color, such as gradients,
can be incorporated. A color gradient can be defined using control
points which are then transferred using the deformation field W12.
In addition to specifying the color scribbles on the first frame, the
user may also specify a set of depth (in)equalities (see green and
blue arrows in Fig. 10a), which are transformed into a depth map
of the image, using the algorithm from [Sýkora et al. 2010]. The
resulting depth map can be used for improving the registration by
avoiding layering problems and topology variations. The depth val-
ues can be easily transferred to the other frames along with the color
scribbles, so that they can be further utilized for enhancing the tex-
ture with 3D-like effects, as discussed in the following section.

4 3D-like effects

In this section we describe post-processing operations that allow
artists to simulate 3D-like effects entirely in the 2D domain, by-
passing the need to reconstruct and render a 3D object (see Fig. 7).
We first present a new formulation of the popular Lumo tech-
nique [Johnston 2002] using the depth map generated by [Sýkora
et al. 2010] (Fig. 6b) and then show how to exploit such shading to
simulate texture rounding (Fig. 6f). In addition, we simulate ambi-
ent occlusion effects, as described in [Sýkora et al. 2010] to enhance
the perception of depth in the image (see Figs. 6c and 7d).

4.1 Shading

The original Lumo algorithm [Johnston 2002] approximates the
normal field inside a region using the 2D normals computed on its
boundaries. On the silhouette of an object the normal component in
the viewing direction (the z-axis in our case) is 0, hence the normal
is completely specified by its x and y components. Furthermore,
the gradient of the image intensity is orthogonal to the silhouette,
giving exactly the required normal components.

This simple workflow holds when the target shape contains only
silhouette pixels. For interior strokes, depth discontinuities should
be taken into account to produce convincing results. To address this
issue Johnston utilized a manually painted over-under assignment
map which is difficult to create and makes the overall process time-
consuming. Recently, Sýkora et al. [2010] noted that such a map
can be generated automatically from a depth map produced by their
algorithm. In this paper we present a new formulation of Lumo
which completely avoids this additional step and produces the final
normal field in one step.

Our new solution is based on a homogeneous Laplace equation with
specific boundary conditions defined at depth discontinuities pro-
vided by [Sýkora et al. 2010] (see Fig. 6a). For a given pixel, if
it is on the boundary of a domain, its depth value is different than
its neighbors. If the depth value is larger (Fig. 6a, red curves), it
means the pixel lies on the silhouette of the object, and the gradient
of the depth map should be used as the local components of the nor-
mal. If, on the other hand, the depth value is smaller (Fig. 6a, blue
curve), then the pixel lies near the border of an occluding object,
and nothing can be said about the values of the normals in that area,
except that they should be continuous.

Hence, we can find the normal components by solving the homoge-
neous Laplace equation:

∇
2
f = 0 (1)

where f is either the x or y component of the normal vector n
and the Laplace operator ∇

2 is represented by a sparse matrix L:
Lij = wij for all pixels j in the 4-connected neighborhood Ni of
pixel i, and Lii = −

∑

j∈Ni
wij , with wij = 1. As discussed in

Section 4.1, the boundary conditions are given by the depth map d
(see Fig. 6a):

Dirichlet: fp = d′pq ⇐⇒ dp > dq

Neumann: f ′pq = 0 ⇐⇒ dp < dq

(2)

where q is a neighboring pixel to p, d′pq is the derivative of the
depth map at pixel p in the direction pq and f ′pq is the derivative of
the normal component (nx or ny). This leads to a sparse system of
linear equations with two different right hand sides (nx and ny) for
which a fast GPU-based solver exists [Jeschke et al. 2009].
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Figure 7: Adding visual richness to a hand-drawn cartoon: (a) original line drawing, (b) painted with homogenous colors, (c) painted with
textures, (d) added texture rounding, shading & simulation of ambient occlusion.

Given the nx and ny components, we can estimate nz using the
sphere equation:

nz =
√

1 − n2
x − n2

y (3)

The computed normal values can be directly used to approximate
the shading of a Lambertian surface with normals ~n, which is illu-
minated in the direction of the z-axis. More complicated lighting
scenarios can be simulated using user-specified environment maps,
as in [Johnston 2002].

4.2 Texture rounding

We can further utilize the values of nz , by reinterpreting them as
a height-function h to simulate another 3D effect – texture round-
ing. When texture mapping is applied to a 3D surface, the cur-
vature of the surface generates an area distortion, effectively caus-
ing the texture in curved areas to scale (Fig. 6f). Parallax map-
ping [Kaneko et al. 2001] is one technique for simulating this ef-
fect [Winnemöller et al. 2009]. However, parallax mapping does
not preserve the original UV coordinates at region boundaries and
therefore produces noticeable texture sliding and can easily ex-
pose hidden “over-distorted” parts of the texture beyond the region
boundaries (see Fig. 8).

Figure 8: Parallax mapping failure: resulting texture coordinates
are not preserved at region boundaries and depend on the eye posi-
tion (red dots). This can cause noticeable texture sliding.

To avoid this artifact we propose a new approach that directly com-
putes texture coordinates on a virtual 3D surface represented as a
height function S = (x, y, h(x, y)) (see Fig. 9).

This can be done by mapping the boundary of the surface to the
plane, and then solving a Laplace equation ∇

2

LBf = 0 for the
interior values, where ∇

2

LB is the Laplace-Beltrami operator. For
a surface given as a height function, this operator is given by a
matrix with a similar structure to L used in the previous section,
but whose weights wij are different, since we are now measuring
distances on the surface S, and not on the plane. However, there is

no need to actually construct and flatten the 3D surface S. Instead,
this procedure can be seen as solving an inhomogeneous Laplace
equation on the plane:

∇
2

wf = 0 (4)

where we are simulating the metric of a curved surface by manipu-
lating the weights of the Laplacian matrix. The operator ∇

2

w is the
same as the Laplace-Beltrami operator ∇

2

LB of S, and we take

wij =
1

√

1 + (hi − hj)2
(5)

which is the inverse of the length of the edge connecting the two
neighboring vertices i and j on S. This yields another large sparse
system of linear equations, now with an irregular matrix and two
different right hand sides. It can be efficiently solved using a direct
solver such as PARDISO [Schenk and Gärtner 2004]. Interestingly,
the inhomogeneous Laplace equation has been used in texture map-
ping applications such as [Yoshizawa et al. 2004] and [Zayer et al.
2005] to remove distortion.

S(x, h(x))

f

Figure 9: Texture rounding (1D example): flat texture coordinates
and target surface S = (x, h(x)) proportional to nz (left), linearly
interpolated texture coordinates on S and their projection back to
flat domain f (right).

Solving Equation (4) using Dirichlet boundary conditions given by
the boundary of the domain yields texture coordinates for the (vir-
tual) surface S. These are in fact a map from the plane to the plane,
taking a point (x, y) to the texture coordinates of (x, y, h(x, y)).
By composing this map with the texture coordinates generated in
the previous section (Fig. 6e), we can add the required texture dis-
tortion (Fig. 6f). Finally, we combine the texture distortion with
shading and simulation of ambient occlusion (Fig. 6d, g, h), to
achieve a rich 3D-like effect (Fig. 7d).

5 Results

The proposed algorithm has been implemented as a part of a profes-
sional cartoon production pipeline and tested by artists on several
animation sequences.



A typical workflow preferred by the artists is to paint the sequence
first, then apply depth (in)equalities and finally do the texture trans-
fer as a post-process. This helps the artists concentrate on simi-
lar tasks: as compared to painting where detailed corrections are
sometimes necessary, texturing is much closer to an automatic pro-
cess and does not require much interaction. Nevertheless, the user
inspection and occasional interaction is still beneficial as it can con-
siderably improve the quality of the result, especially when the
structure of the target and source frames differs significantly.

Several examples of texture-mapped cartoons, including 3D-like
effects are presented in Fig. 10. As can be seen in Fig. 10a, the
majority of user interaction is devoted to scribbling and specifica-
tion of depth (in)equalities. Once this task is completed, the texture
transfer becomes a quick operation (Fig. 10b). Note that even if the
registration is not accurate, the extrapolation of the UV coordinates
keeps the result visually consistent (Fig. 10c, d).

To evaluate our method, we conducted an informal study and
showed several textured sequences to numerous uninformed par-
ticipants (20+) of varying age, sex and background. For textures
with highly salient structure, some of the participants reported reg-
istration artifacts, however when less salient textures were used,
subjects did not notice any inaccuracies in the registration. This
implies that our technique will perform well in the common case
since artists depict the visually important structure via contours and
use less salient textures to add detail to interior regions.

6 Limitations and Future work

Although the proposed method produces convincing results on a
variety of cartoon sequences, there are a few limitations we plan
to address in future work: (1) Large movements out of the camera
plane can be challenging to simulate using our approach. However,
in practice this limitation is not as serious as it may seem. When
there is some structure on the rotating “surface” (e.g., the belt on the
walking boy’s jacket in Fig. 10), the algorithm has a proper motion
guide and the resulting ARAP deformation and texture rounding
effect produce convincing results. This nicely corresponds to the
observation made by Breslav et al. [2007] that only approximate
3D coherence is necessary for displaying 2D dynamic patterns on a
rotating 3D object. In the case where there is no structure, the algo-
rithm may fail, however the user can always manipulate the ARAP
deformation during the registration to simulate this effect manually.
(2) Simulation of ambient occlusion might require detailed depth
maps, which are somewhat tedious to specify. We plan to incorpo-
rate the analysis of junctions to reduce the amount of required user
editing. (3) 3D-like shading tends to produce temporal flickering
when a part of the character is occluded. We plan to formulate an
optimization framework to overcome this. (4) As shown in Fig. 3,
not all textures are suitable input for our approach. We plan to use
saliency maps generated from a model of the HVS (such as the tech-
nique [Walther and Koch 2006] used to generate the maps in Fig. 3
or [Guo et al. 2008]) as a perceptually motivated metric to estimate
texture eligibility automatically.

7 Conclusions

We have presented a new approach to texture mapping of hand-
drawn cartoon animations requiring considerably less manual work
compared to previous techniques. By exploiting the lower sensi-
tivity of the human visual system to motion inconsistency in less
salient textured areas, we have shown that even a simple 2D image
registration algorithm can produce convincing results, avoiding the
creation of proxy 3D models and specification of 2D-to-3D corre-
spondences. We believe our novel approach could motivate other

researchers and artists to further develop this emerging visual style
to become a standard in the world of computer assisted traditional
animation.
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SÝKORA, D., DINGLIANA, J., AND COLLINS, S. 2009. Lazy-
Brush: Flexible painting tool for hand-drawn cartoons. Com-
puter Graphics Forum 28, 2, 599–608.
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a b c d

Figure 10: Results: (a) source frame with user-defined color/texture scribbles and depth (in)equalities, (b) rough texture transfer to the target
frame, (c, d) textured source & target frame enhanced using a combination of selected 3D-like effects.


