
Coda: The cultural effects of queueing at Disney Animation

Marc Jordan Kevin Constantine∗

Walt Disney Animation Studios

(a) Walt Disney Animation Studios Renderfarm (b) Coda Queueing System

Abstract

When we began designing the new queueing system for Walt Dis-
ney Animation Studios, we had a simple goal in mind: Take some
shell commands, run them on some remote machines, and return the
results. What we thought would be a six month project evolved into
an eight year journey that helped revolutionize the culture at our stu-
dio, and built a world class queueing system capable of executing
millions of tasks per day. Three key features of Coda, automated
render wrangling, localized job priority, and advanced desktop ren-
dering, have helped to encourage a culture of trust and collabo-
ration, both amongst the different shows competing for queue re-
sources, and between the production and technology organizations
in the studio.

Keywords: batch queueing, studio culture, renderfarm, scheduling

Concepts: •Software and its engineering → Designing
software; •Human-centered computing → Field studies;
•Computer systems organization → Grid computing; •Theory
of computation→ Distributed computing models;

1 Automated render wrangling

Our studio used to have a render wrangler team in the technology
group that was tasked with making sure that the render farm was
being used efficiently. This team worked in shifts, around the clock
adjusting jobs in the queue to keep the farm fully utilized. They
were not only responsible for fixing broken frames and replacing
failed hard drives, but this technology group was essentially imple-
menting a manual, human-driven algorithm to share the queue re-
sources between the different productions. This put them in the un-
fortunate position of having to arbitrate the availability of a scarce
resource among multiple groups who each believed they were most
important.

∗{Marc.Jordan, Kevin.Constantine}@disneyanimation.com
Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s). c© 2016 Copyright held by the owner/author(s).
SIGGRAPH ’16, July 24-28, 2016, Anaheim, CA,
ISBN: 978-1-4503-4282-7/16/07
DOI: http://dx.doi.org/10.1145/2897839.2927420

Coda divides the render resources into multiple allocation pools.
These pools are governed by a sharing mechanism, which we call
speculation, that allows jobs from one pool to overflow automati-
cally into the compute resources of other pools if there isn’t enough
work to fill those pools. When more work for those other pools is
submitted, jobs running outside their pool will be preempted and
returned to the queue. Thus the scheduling automatically re-adjusts
to ensure that each pool gets its configured share. This ensures that
the queue is always fully utilized as long as there are jobs anywhere
in the studio that can be run, and is not limited based on what the
current allocations happen to be. Now that the queue auto-balances
between pools, our teams focus on troubleshooting the jobs them-
selves, rather than worrying about getting them running in the first
place. Further, we built tools to allow the productions themselves
to manage and adjust the allocation of queue resources. The lead-
ership for the different productions communicate regularly with
each other to negotiate the allocation of resources across the studio,
rather than having those requests be arbitrated by the technology
organization. This increases the visibility into the resource needs
of the studio as a whole, builds trust between the different compet-
ing productions, and allows them to be more agile in responding to
changing queue needs in the studio.

2 Job priority is localized

Ask 10 department managers which queue jobs are “high priority”,
and you’ll get 10 different answers. As scheduling needs change
over the course of production, the priority of the jobs in the queue
get adjusted to meet those needs. In the past, these priority adjust-
ments were proxied through the render wrangler group which had
to balance those adjustments within a single priority list of all the
other jobs in the queue.

In Coda, each department is given an allocation pool, and each of
the pools has it’s own discrete priority list, thus changes to job pri-
orities are localized to the department’s allocation pool that the jobs
are scheduled in. Each department manager now has the ability to
change the priority of jobs in their department without having to
worry about causing adverse effects to the jobs from other produc-
tions or departments in the queue. We’ve also developed tools to
allow department managers to adjust job priorities themselves, giv-
ing them immediate control of the jobs in their pool without having
to proxy those requests through a third party.

http://dx.doi.org/10.1145/2897839.2927420


3 Advanced Desktop rendering

Artist productivity is extremely important. To that end, they are
each given very powerful workstations. However, their workflow
tends to be bursty in nature. That is to say, they have huge com-
putational demands for very short periods of time. This leaves the
workstations underutilized for much of the day, especially at night
and on weekends.

We approach the solution for accessing these unused processors in
three ways. First, we tackle the interactive effects of queue renders
on interactive performance by restricting how much of an artist’s
machine a queue job has access to. Next, we develop a tool that
allows artists to specify how much of their machine is available to
the queue. Finally, we need to incentivize artists to donate as much
as they can to the queue. We approach this through gamification.
We track the number of render hours each machine provides over
the course of a production. At the end of each show, awards are
given to the owners of machines donating the most time.

4 Conclusion

While we initially set out to solve technological barriers with the
queueing system we had, we managed to achieve significantly
more. Coda increased our render farm utilization which has al-
lowed us to optimize our productivity. Further, Coda has removed
the technology group from being the arbitrator of resources within
the studio, and engendered a feeling that the queue is a studio re-
source that, when shared effectively, can meet the needs of the stu-
dio as a whole.


