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1 Background

Subsurface scattering is ubiquitous in digital worlds created for
films. While diffusion-based approximations are still widely used,
they can produce undesirable and implausible results when the
“semi-infinite slab“ assumption is violated. The brute force al-
ternative, Monte Carlo simulation of volumetric path tracing, is
much more robust over geometric variations. However, its physi-
cally based nature makes it unintuitive for artists. In this talk, we
exploit the best of both worlds: taking advantage of the robust-
ness of the path-traced approach while allowing artists to use the
production-proven intuitive controls from the Normalized Diffu-
sion model [Burley 2015]. We also introduce a sampling scheme
that improves the performance of the brute force approach to be
practical for production rendering.

2 Intuitive Parameterization

With Normalized Diffusion, artists specify the apparent color of
the surface, A, along with a scattering distance, d. These param-
eters directly control the diffusion profile in an intuitive way. In
contrast, volumetric path tracing requires single-scattering param-
eters, and the apparent color, i.e. the multiple-scattering albedo, is
the end result of numerous scattering events. Unfortunately, it is
impossible to analytically invert the random walk process to in-
fer the parameters describing individual scattering events from the
multiple-scattering result.

To simplify things, as with diffusion, we assume isotropic scattering
with a diffuse interface. Our insight is that, on a semi-infinite slab,
the single-scattering albedo, α, is then the only factor affecting the
multiple-scattering albedo A while the extinction coefficient, σt,
merely scales the path lengths and hence only affects the translu-
cency. To map the relationship between A and α, we rendered a
slab with differing single scattering albedos and fixed extinction
coefficient, illuminated by a white environment. The resulting data
resembles an exponential relationship which we fit using a third de-
gree polynomial in log-space. We infer the extinction coefficient
from our scattering distance using the mapping from Christensen et
al. [2015]. Combining these two mappings gives us our reparame-
terization:

α = 1− e−5.09406A+2.61188A2−4.31805A3

(1)

s = 1.9−A+ 3.5 ∗ (A− 0.8)2 (2)
σt = 1/(d ∗ s) (3)
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Figure 1: Translucent materials rendered using Normalized Dif-
fusion (left) vs. path-traced subsurface scattering (right). With
our parameterization, path-traced subsurface scattering shares the
same controls of the production-proven Normalized Diffusion and
produces identical results on a semi-infinite slab (top row). Yet it
brings out more geometric details especially around highly curved
areas.

3 Sampling

Sampling volumetric path tracing consists of two steps: directional
and distance sampling. Directional sampling is trivial since we as-
sume isotropic scattering. However, sampling distance is a chal-
lenge when the volume extinction is chromatic, which is usually
the case. Taking skin for example, red light travels much further
than other wavelengths before a statistical scattering/absorption
event. The target integrand f(s) for sampling distance can be
perfectly importance sampled according to the probability density
p(s) = σte

−σts for each wavelength. To reduce sample vari-
ance, we combine estimators for different wavelengths using MIS
where each estimator is given a relative weight proportional to
f(s)/p(s) = σs/σt, which is the single-scattering albedo. We also
multiply the accumulated per-wavelength throughput of the current
path into the weight reasoning that as the throughput goes to zero
for some wavelength, no further samples are needed.

http://dx.doi.org/10.1145/2897839.2927433


4 Discussion

With our sampling scheme, brute force path tracing achieves ren-
dering time and noise level comparable to ray-traced diffusion,
at least with parameters typical of skin. While more rays gen-
erally need to be traced with path tracing, determining sample
points for diffusion still requires a significant number of probe
rays [King et al. 2013], and unlike the probe rays, the path-tracing
segments are of fixed length making them generally less expensive
to trace. We have integrated path-traced subsurface scattering with
our BSDF [Burley 2015] by replacing the non-directional (i.e. Lam-
bertian) diffuse term and applying the view- and light-dependent
diffuse terms to the entry and exit points respectively. This new
shading model has been successfully adopted by production at the
Walt Disney Animation Studios.
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