
Simulation of nonlinear Kirchhoff-Love thin shells
using subdivision finite elements

David Clyde∗
University of California, Los Angeles

Joseph Teran†
University of California, Los Angeles

Rasmus Tamstorf
Walt Disney Animation Studios

ABSTRACT
This document presents the details necessary for simulation of
thin shells with finite strains based on the Kirchhoff-Love assump-
tions. With an eye towards cloth simulation, we combine this with
a nonlinear orthotropic constitutive model. We also leverage a
conforming spatial discretization using Catmull-Clark subdivision
surfaces to ensure convergence under refinement. The dynamics is
handled in a fully implicit fashion to allow for large timesteps and
solution of quasi-static problems.

KEYWORDS
subdivision finite elements, isogeometric analysis, thin shell simu-
lation, cloth simulation

ACM Reference format:
David Clyde, Joseph Teran, and Rasmus Tamstorf. 2017. Simulation of non-
linear Kirchhoff-Love thin shells using subdivision finite elements. In Pro-
ceedings of SCA ’17, Los Angeles, CA, USA, July 28-30, 2017, 7 pages.
https://doi.org/10.1145/3099564.3099577

1 RELATEDWORK
The method presented here is an example of “isogeometric analy-
sis” (IGA), where subdivision surfaces are used to represent both
the geometry (of cloth) and the basis functions for finite element
analysis. This concept has been credited to [Hughes et al. 2005], but
subdivision finite elements were originally introduced by [Cirak
et al. 2000], where they were applied to linear elastic Kirchhoff-
Love thin shells. The method was later extended to finite strain
analysis in [Cirak and Ortiz 2001], where they considered a Neo-
Hookean material but used explicit integration for the temporal
evolution. In graphics, [Thomaszewski et al. 2006] combined the
subdivision finite elements with a co-rotational linear elasticity
model and introduced implicit time integration using the backward
Euler scheme. More recently, [Long et al. 2012] considered shear

∗Also with Walt Disney Animation Studios.
†Also with Walt Disney Animation Studios.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SCA ’17, July 28-30, 2017, Los Angeles, CA, USA
© 2017 Copyright held by the owner/author(s). Publication rights licensed to Associa-
tion for Computing Machinerry.
ISBN 978-1-4503-5091-4/17/07. . . $15.00
https://doi.org/10.1145/3099564.3099577

deformable shells, but limited their discussion to quasi-static prob-
lems. The work by [Vetter et al. 2013] investigates growth problems
using the St. Venant-Kirchhoff material model along with an ex-
plicit Newmark predictor-corrector integration scheme. All of this
prior work is based on Loop subdivision on triangle meshes.

As an alternative to Loop subdivision, [Wawrzinek et al. 2011]
considers the Catmull-Clark subdivision scheme with linear elas-
ticity for a variety of applications that do not involve dynamics.

2 KIRCHHOFF-LOVE KINEMATICS
The Kirchhoff-Love shell theory models thin shell kinematics in
terms of a 2D midsurface by assuming that straight lines initially
perpendicular to the midsurface remain straight lines perpedicular
to the midsurface and retain their length during deformation.

In this work, we assume a constant thickness τ per cloth object.
We represent the deformed midsurface by a map x from a 2D param-
eter space ω to worldspace Ω. The corresponding map describing
the volumetric cloth object is denoted by r : ωτ → Ωτ , where ωτ
is the 3D parameter space, and Ωτ is the region of R3 occupied by
the shell. The curvilinear coordinates for a point in the shell are
denoted by ξ = (ξ 1, ξ 2, ξ 3), where superscripts indicate contravari-
ant indices (not to be confused with exponentiation). Given these
conventions, the Kirchhoff-Love assumptions directly imply

r (ξ 1, ξ 2, ξ 3) = x (ξ 1, ξ 2) + ξ 3a3 (ξ
1, ξ 2) , − τ2 ≤ ξ

3 ≤ τ
2 ,

where a3 (ξ 1, ξ 2) is the unit normal to the deformed midsurface. In
the following, we use Greek letters for indices in {1, 2}, lowercase
Latin letters for indices in {1, 2, 3}, and uppercase Latin letters for
indices that range from 1 to n, where n > 2. Furthermore we use
the comma notation to denote partial derivatives with respect to
ξα such that x,α = ∂x/∂ξα . For convenience, let aα = x,α denote
the covariant basis vectors of the midsurface or, equivalently, the
columns of the midsurface mapping Jacobian. We can then write
the surface normal as

a3 =
a1 × a2
∥a1 × a2∥

.

Also, let gi denote the covariant curvilinear basis vectors ∂r
∂ξ i , and

use gi to denote the corresponding contravariant basis vectors;
thus, gi · gj = δ

j
i and(

g1 g2 g3
)
=
∂r

∂ξ
=

(
a1 a2 0

)
+

(
ξ 3a3,1 ξ 3a3,2 a3

)
Finally, define G = ∂r

∂ξ
T ∂r

∂ξ as the covariant metric tensor with
entries дi j = gi · gj . Throughout this document, we use overbar
notation for quantities related to the undeformed configuration.

https://doi.org/10.1145/3099564.3099577
https://doi.org/10.1145/3099564.3099577

SCA ’17, July 28-30, 2017, Los Angeles, CA, USA David Clyde, Joseph Teran, and Rasmus Tamstorf

Thus, for example, x̄ : ω → Ω denotes the undeformed midsurface
map; analogous definitions are made for r̄ , ā3, and so on.

2.1 Deformation gradient and strain tensor
The deformation function from the undeformed shell to the de-
formed shell is given by

ϕ (x̄) = r (r̄−1 (x̄))

and the deformation gradient F : Ω → R3×3 is the Jacobian of
ϕ (x̄) :

F =
∂ϕ

∂x̄
=
∂r

∂ξ

(
∂r̄

∂ξ

)−1
= gi ⊗ ḡi . (1)

Note that here, as well as in the following, there is an implied
summation over repeated indices. Given the deformation gradient,
the Green-Lagrange strain is

E = 1
2
(
FT F − I

)
= 1

2
(
(ḡi ⊗ gi) (gj ⊗ ḡj) − I

)
= 1

2
(
дi j ḡi ⊗ ḡj − I

)
(2)

The entries дi j satisfy

дα β = (aα + ξ
3a3,α)

T (aβ + ξ
3a3,β)

дα3 = 0 (3)
д33 = 1,

in which дα3 has been simplified using aα · a3 = a3,α · a3 = 0. By
using

a3,α =
1

∥a1 × a2∥

(
I − a3a3

T
) (

a1,α × a2 + a1 × a2,α
)
, (4)

we obtain дα β from the inputs a1, a2, a1,1, a1,2, a2,2, ξ 3. The anal-
ogous formula for ā3,α yields ḡj and ultimately ḡj from ā1, ā2,
ā1,1, ā1,2, ā2,2, ξ 3. We define the column vector z = z (ξ) in R15

as the concatenation of z1 = a1, z2 = a2, z3 = a1,1, z4 = a1,2,
and z5 = a2,2, i.e., z = (zT1 , . . . , z

T
5)

T . In the following, it will be
convenient to use the notation E = E (z, ξ 3), leaving implicit the
dependence on the rest configuration.

3 ORTHOTROPIC CONSTITUTIVE MODEL
A hyperelastic material is orthotropic provided that there exists an
orthonormal basis in the undeformed space such that the elastic
potential is invariant under replacement of E with QT EQ for any
element Q of the orthotropic symmetry group. Specifically, this
means that it is invariant under reflection across any of the given
basis vectors. In modelling woven cloth, the orthotropy basis is
specified by the direction matrix D = [d1,d2,d3], where d1, d2,
and d3 correspond to the (normalized) material warp, weft, and
normal directions, respectively.

Let Lj be the reflection matrix I − 2d jdTj ; then, to demonstrate
orthotropic symmetry, wemust establish that F and FLj produce the
same energy density for any F and for each j . If the energy density
is denoted byψ , then this means that thatψ (E) = ψ (LjELj).

To construct such an energy density, define the reduced strain Ẽ
as Ẽ = DT ED. By definition of the deformation gradient, Fdα lies in
the deformed configuration tangent plane, while the Kirchhoff-Love

assumptions imply Fd3 is a unit vector in the deformed configura-
tion’s normal direction. Thus, dTα FT Fd3 = 0 and dT3 F

T Fd3 = 1, so
Ẽ has the following block structure:

Ẽ =
*..
,

Ẽ11 Ẽ12 0
Ẽ12 Ẽ22 0
0 0 0

+//
-
.

We then claim that Ẽαα = dTαEdα and Ẽ2
12 = (dT1 Ed2)2 are

invariant under the replacement E→ LjELj . Indeed,

dTαLjELjdα =



(−dα)T E(−dα) if α = j

dTαEdα if α , j

= dTαEdα

and

(
dT1 LjELjd2

)2
=




(
−dT1 Ed2

)2
if 1 ≤ j ≤ 2(

dT1 Ed2
)2

if j = 3

=
(
dT1 Ed2

)2
.

From this it follows that any energy density,ψ , written as a function
of Ẽαα and Ẽ2

12, is orthotropically invariant. In the following we
consider the case whereψ is given by

ψ =
a11
2
η1 (Ẽ

2
11) + a12η2 (Ẽ11Ẽ22) +

a22
2
η3 (Ẽ

2
22) +G12η4 (Ẽ

2
12) (5)

ηj (x) =

dj∑
i=1

µ ji

α ji

(
(x + 1)α ji − 1

)
In this context, a11, a22, a12, andG12 are all material parameters that
should not be confused with a1,1, a1,2, a2,2 or the (1, 2) component
of the G matrix. µ ji and α ji are also material parameters.

4 GOVERNING PDE
4.1 Weak form derivation
The PDE for evolution of the midsurface map x may be derived
from Lagrangian mechanics. For x ∈ H2 (ω → R3), the Lagrangian
is defined as the difference L = T −V between kinetic energyT and
potential energy V . The governing equations are then

∂

∂t

(
∂L

∂ẋ

)
=
∂L

∂x

and the corresponding weak form is∫
ω

∂

∂t

(
∂L

∂ẋ

)
vdξ 1dξ 2 =

∫
ω

(
∂L

∂x

)
vdξ 1dξ 2

for an arbitrary test function v ∈ H2 (ω → R3). Derivatives of L
are interpreted in variational sense; for example,∫

ω

(
∂L

∂x

)
vdξ 1dξ 2 =

∂L(x + εv)

∂ε

������ε=0
.

Subdivision FEM for nonlinear Kirchhoff-Love thin shells SCA ’17, July 28-30, 2017, Los Angeles, CA, USA

Let J̄ denote the Jacobian determinant | ∂r̄∂ξ | and ρ̂ the density pull-
back ρ̄ ◦ r̄ . Then the kinetic energy is

T =
1
2

∫
Ω
τ
ρ̄∥ϕ̇∥2dx̄

=
1
2

∫
ωτ

ρ̂∥ṙ ∥2 J̄dξ

=
1
2

∫
ωτ

ρ̂∥ẋ + ξ 3ȧ3∥
2 J̄dξ .

The term ξ 3ȧ3 introduces complex dependencies on both x and ẋ ,
but the multiplier ξ 3 makes this term small in most contexts. For
simplicity, we discard this term, resulting in the standard form for
the finite element mass matrix in Equation (9), which is also used
by e.g. [Cirak and Ortiz 2001; Kiendl et al. 2015]. Based on this
simplification, the resulting variational derivatives then satisfy∫

ω

(
∂T

∂x

)
vdξ 1dξ 2 = 0∫

ω

∂

∂t

(
∂T

∂ẋ

)
vdξ 1dξ 2 =

∫
ωτ

ρ̂ẍTv J̄dξ .

Given a general hyperelastic energy density ψ = ψ (z) and a con-
stant gravity field g ∈ R3, the potential energy is

V =

∫
Ω
τ
ψ (z(r̄−1 (x̄))) + ρ̄ (x̄)дTϕ (x̄)dx̄

=

∫
ωτ

(
ψ (z(ξ)) + ρ̂ (ξ)gT r (ξ)

)
J̄dξ

with derivatives satisfying∫
ω

(
∂V

∂x

)
vdξ 1dξ 2 =

∫
ωτ

(
∂ψ

∂x,1
v,1 +

∂ψ

∂x,2
v,2

+
∂ψ

∂x,11
v,11 +

∂ψ

∂x,12
v,12 +

∂ψ

∂x,22
v,22 + ρ̂д

Tv

)
J̄dξ

and ∫
ω

∂

∂t

(
∂V

∂ẋ

)
vdξ 1dξ 2 = 0

The weak form PDE is then∫
ωτ

ρ̂ẍTv J̄dξ = −

∫
ωτ

(
∂ψ

∂x,1
v,1 +

∂ψ

∂x,2
v,2

+
∂ψ

∂x,11
v,11 +

∂ψ

∂x,12
v,12 +

∂ψ

∂x,22
v,22 + ρ̂д

Tv

)
J̄dξ (6)

Note that the previously stated conditions x ,v ∈ H2 (ω → R3) are
sufficient to make the weak form well-defined.

4.2 Strong form and boundary terms
Integrating the weak form by parts yields the corresponding strong
form

ρ̂ẍ J̄ = − ρ̂g J̄ +
(
∂ψ

∂x,1
J̄

)
,1
+

(
∂ψ

∂x,2
J̄

)
,2

−

(
∂ψ

∂x,11
J̄

)
,11
−

(
∂ψ

∂x,12
J̄

)
,12
−

(
∂ψ

∂x,22
J̄

)
,22

+ boundary terms (7)

The integration by parts produces several boundary terms on the
right-hand side of Equation (7), which may be expressed in terms
of the outward normal n = (n1,n2,n3) on ∂ωτ :∫

∂ωτ



n1



∂ψ

∂x,1
J̄ −

(
∂ψ

∂x,11
J̄

)
,1
−

1
2

(
∂ψ

∂x,12
J̄

)
,2


v

+n2



∂ψ

∂x,2
J̄ −

(
∂ψ

∂x,22
J̄

)
,2
−

1
2

(
∂ψ

∂x,12
J̄

)
,1


v

+

[
n1
∂ψ

∂x,11
J̄ +

1
2
n2
∂ψ

∂x,12
J̄

]
v,1

+

[
n2
∂ψ

∂x,22
J̄ +

1
2
n1
∂ψ

∂x,12
J̄

]
v,2



dξ

In practice, we set these Neumann boundary conditions equal to 0
and impose any desired position constraints by Dirichlet means in-
stead. We implement three distinct types of boundary conditions. A
clamped boundary has specified positions and normals for x ; a sup-
ported boundary has specified positions only; and a free boundary
is not subject to any Dirichlet constraint.

5 SPATIAL DISCRETIZATION
We use the finite element method (FEM) to spatially discretize the
governing weak form PDE in Equation (6). To provide the necessary
H2 smoothness, we use subdivision finite elements as originally
introduced by [Cirak et al. 2000]. For purposes of this section, the
actual choice of subdivision scheme does not matter as long as
it guarantees sufficient smoothness. As with most finite element
methods, we can express the kinematics as a linear combination of
basis functions :

x (q; ξ 1, ξ 2) = qTI NI (ξ
1, ξ 2), x j (q; ξ 1, ξ 2) = qI jNI (ξ

1, ξ 2), (8)

where qI = (qI1, qI2, qI3) ∈ R3 is a row-vector. These qI are often
naturally interpreted geometrically. For example, with piecewise
linear interpolation, these are the locations of the mesh grid nodes.
However, with subdivision elements, they are control vertices; more
generally, they can be thought of as generalized coordinates, which
is why they are denoted by q. Note that summation is implied on
the repeated index I , where I = 1, . . . ,nv and nv is the number of
control vertices. The set {qI j } can be thought of as a nv ×3 matrix of
control point locations. With a slight abuse of notation, we use q to
denote the corresponding column vector of all the control vertices.

We now substitute the discretized x into the weak form in Equa-
tion (6) withv = NKe j for arbitrary K and standard basis vectors
e j ∈ R3. Note e.g. ∂ψ

∂x ,1
v,1 becomes ∂ψ

∂x j,1
NK,1 =

∂ψ
∂x j,1

∂x j,1
∂qK j

. The
resulting system of equations and exact mass matrix entries are

M̃KI q̈I = −
∫
ωτ

(
∂ψ

∂qK
+ ρ̂gTNK

)
J̄dξ

M̃KI =

∫
ωτ

ρ̂NINK J̄dξ . (9)

6 QUADRATURE
Evaluating the above integrals numerically using a quadrature rule
with evaluation sites ξ (r) and corresponding weights dξ (r) gives

MKI q̈I = f K (q), (10)

SCA ’17, July 28-30, 2017, Los Angeles, CA, USA David Clyde, Joseph Teran, and Rasmus Tamstorf

where

MKI =
∑
r
ρ̂ (r)N

(r)
I N

(r)
K J̄ (r)dξ (r)

f K (q) = −
∑
r

(
∂ψ

∂qK

(
E(r)

)
+ ρ̂ (r)gTN (r)

K

)
J̄ (r)dξ (r)

In practice, we use a lumped mass matrix, which combines each
row’s entries onto the diagonal with the result

MI I =
∑
r
ρ̂ (r)N

(r)
I J̄ (r)dξ (r)

andMIK = 0 for I , K .
Regardless of which mass matrix is being used, we need to com-

pute ρ̂ (r) . For a uniform mass distribution, this is trivial. For a
non-uniform mass distribution, the density will typically be spec-
ified at each control vertex, so we denote the corresponding set
of values by ρ̂L , where L = 1, . . . ,nv . To compute ρ̂ (r) , we then
interpolate our density function at the quadrature points:

ρ̂ (r) = ρ̂LN
(r)
L .

For the lumped mass matrix this leads to

MI I =
∑
r
ρ̂LN

(r)
L N

(r)
I J̄ (r)dξ (r) . (11)

Similar to [Cirak and Ortiz 2001], we use Simpson’s rule for inte-
gration through the thickness and Gauss quadrature for integration
across the surface. However, it is important to choose a sufficient
number of Gaussian quadrature points. For Loop subdivision, a sin-
gle point per triangle is sufficient, [Cirak et al. 2000]. Catmull-Clark
basis functions on the other hand are of polynomial degree 3 in
regular regions, so integrands involving just the basis functions
have total degree 6, and thus require 4× 4 quadrature points [Cools
1997]. For nonlinear integrands, more quadrature points may in
general be necessary, but we have found 4 × 4 quadrature points to
be sufficient in regular regions. The integration gets more compli-
cated around extra-ordinary vertices. Most recently, this has been
studied by [Jüttler et al. 2016] for Loop subdivision and [Wawrzinek
and Polthier 2016] for Catmull-Clark schemes.

7 BOUNDARY CONDITIONS
To enforce a supported boundary condition (positions constrained),
we add the requirement x (ξ 1, ξ 2) = bs (ξ 1, ξ 2) for some specified
list of parameter space points (ξ 1, ξ 2) along the boundary seg-
ment in question. Each mesh element corresponds to a quadrilat-
eral region in parameter space and, in practice, we apply bound-
ary conditions (if any) to the points at the corners of each of
these regions. The condition at each such points discretizes as
bs (ξ 1, ξ 2) = qTI NI (ξ

1, ξ 2), which is a linear constraint on q. For a
clamped boundary segment (positions and normals constrained),
we start with the supported boundary condition bs , and then ad-
ditionally enforce normality of a specified direction bn (ξ 1, ξ 2) to
the surface. Let t (ξ 1, ξ 2) denote the surface tangent vector perpen-
dicular to the boundary edge; then t is some linear combination of
a1 = qTI NI,1 and a2 = qTI NI,2, with coefficients depending on the
boundary edge orientation in parameter space. Thus, the necessary
condition t (ξ 1, ξ 2) · bn (ξ 1, ξ 2) = 0 amounts to another linear con-
straint on q. For compatibility, the curve bs must be perpendicular

to the desired normal bn , which (approximately) ensures the sur-
face tangent vector along the boundary edge will be normal to bn
without requiring any additional constraints.

We write the combination of all linear constraints for a given
simulation via the requirement Bq = b (t). Note that the matrix B of
linear constraint coefficients may be precomputed since it depends
only on the topology of the parameter space mesh. We incorpo-
rate this extra requirement into Equation (10) using a Lagrange
multiplier vector λ as

Mq̈ = f + BT λ

Bq = b
(12)

This approach is based on the ideas presented by [Green and
Turkiyyah 2004].

8 TIME DISCRETIZATION
For simulation purposes, the ODE in Equation (12) is discretized
temporally using backward Euler. The result is a nonlinear system
to be solved at each timestep for (qn+1,λn+1):

M
h2 (q

n+1 − qn − hq̇n) = f (qn+1) + BT λn+1

Bqn+1 = bn+1.

Here, h denotes the time step size. To compute the new configura-
tion, qn+1, we consider the incremental potential associated with
the unconstrained time step, [Gast and Schroeder 2014; Kharevych
et al. 2006; Radovitzky and Ortiz 1999]. This potential is minimized
subject to the constraints from the boundary conditions by way
of Newton’s method; thus, given a current iterate (q∗,λ∗), we set
(qn+1,λn+1) = (q∗ + ∆q,λ∗ + ∆λ) and linearize around (q∗,λ∗) to
obtain

M
h2

(
q∗ + ∆q − qn − hq̇n

)
= f (q∗) +

∂f
∂q

(q∗)∆q + BT λ∗ + BT ∆λ

Bq∗ + B∆q = bn+1.

Denoting the energy Hessian by K = − ∂f
∂q now allows computation

of the Newton step (∆q,∆λ) via the linear system(
K + h−2M BT

B 0

) (
∆q
−∆λ

)
=

(
f + BT λ∗ + h−2M (hq̇n + qn − q∗)

bn+1 − Bq∗

)
.

(13)

Our implementation augments the Newton step selection above
with a line search procedure to satisfy the strong Wolfe conditions
based on the incremental potential. We begin each timestep with
the initial guess q∗ = qn .

9 DERIVATIVES OFψ
The solution of the discretized system Equation (13) requires eval-
uation of ψ = ψ (E(z(q))) together with its derivatives ∂ψ

∂q and
∂2ψ
∂q∂q . The evaluation of the derivatives of ψ may be performed
via the chain rule given routines for computing the functionsψ (E),
E(z), and z(q) together with their first and second derivatives. In

Subdivision FEM for nonlinear Kirchhoff-Love thin shells SCA ’17, July 28-30, 2017, Los Angeles, CA, USA

particular,

ψ = ψ (E(z(q; ξ)))
∂ψ

∂q
=
∂ψ

∂E
∂E
∂z
∂z
∂q

∂2ψ

∂q∂q
=
∂z
∂q

T ∂E
∂z

T ∂2ψ

∂E∂E
∂E
∂z
∂z
∂q
+
∂ψ

∂E

(
∂z
∂q

T ∂2E
∂z∂z

∂z
∂q

) (14)

where we have used the fact that ∂2z
∂q∂q = 0. To see this, recall that

the vector z(q; ξ) is the concatenation of vectors x,α and x,α β . The
result then follows by applying the discretization in Equation (8) to
x,α and x,α β :

x,α = qTI NI,α x,α β = qTI NI,α β (15)

∂x,α
∂qI i

= NI,α
∂x,α β

∂qI i
= NI,α β

∂2x,α
∂qI i∂qJ j

= 0
∂2x,α β

∂qI i∂qJ j
= 0.

From this, we also get the values for ∂z
∂q .

The strain E(z) and its z derivatives are computed from the
formulas in §2.1. First, the vectors ḡj may be prestored for each
quadrature point at the start of the solve and reused thereafter.
Recall that G = ∂r

∂ξ
T ∂r

∂ξ . Then Equation (2) means that during the
solve, evaluation of E (and its z derivatives) just requires evaluation
of G (and its z derivatives). According to Equation (3), we can write

G(ξ 1, ξ 2, ξ 3) = A(ξ 1, ξ 2) + ξ 3B(ξ 1, ξ 2) + (ξ 3)2C(ξ 1, ξ 2), (16)

where

Aα β = aα · aβ Aα3 = 0 A33= 1
Bα β = aα · a3,β + aβ · a3,α Bα3 = 0 B33= 0 (17)
Cα β = a3,α · a3,β Cα3 = 0 C33= 0

For a given evaluation point ξ 1, ξ 2 on the midsurface, we must
evaluate G and its z derivatives at several values of ξ 3 (depending
on the quadrature rule). We minimize repeated computation by first
building A, B, C and their z derivatives. All required evaluations of
G are then obtained using Equation (16). To compute z derivatives
of A, B, and C, we first use the chain rule based on Equation (4)
to store the often-reused expressions ∂a3,α

∂z and ∂2a3,α
∂z∂z . Then A,

B, and C are differentiated by the product rule on Equation (17).
Throughout the above process, all Hessians with respect to z are
stored as sparse symmetric matrices, which significantly improves
runtime because several differentiated quantities have extremely
simple dependencies on z. The differentiation of more complex
terms using the product and chain rules then amounts to a series
of sparse matrix-matrix products. Note that E exhibits a complex
(nonquadratic) dependence on z through the a3,α terms, and thus
on the generalized coordinates q. This is in contrast to more stan-
dard volumetric FEM and is the source of greater implementation
complexity for Kirchhoff-Love FEM approaches.

The derivatives ∂ψ
∂E and ∂2ψ

∂E∂E are constructed by the chain rule:

∂ψ

∂Eab
= Dqa

∂ψ

∂Ẽqr
Drb

∂2ψ

∂Eab∂Ecd
= DqaDsc

∂2ψ

∂Ẽqr ∂Ẽst
DrbDtd .

The derivatives ∂ψ
∂Ẽ

and ∂2ψ
∂Ẽ∂Ẽ

depend in turn on derivatives of ηj :

η′j (x) =

dj∑
i=1

µ ji (x + 1)α ji−1

η′′j (x) =

dj∑
i=1

µ ji (α ji − 1) (x + 1)α ji−2.

10 EVALUATION OF SUBDIVISION SURFACES
To complete the evaluation of the derivatives in the previous section,
we need to evaluate the basis functions, NI , and their derivatives
at the quadrature points. As previously mentioned, we use the
Catmull-Clark subdivision scheme to define the basis functions,
but our method is not inherently tied to this scheme. Any other
subdivision scheme with sufficient smoothness could in theory be
substituted. In particular, this will work fine with a triangle-based
method like the Loop subdivision. However, different subdivision
schemes may require different numbers of quadrature points.

In practice, we use the OpenSubdiv library from Pixar, which
is what presents a restriction. The current release (version 3.2.0 at
the time of this writing) only has sufficient support for Catmull-
Clark subdivision surfaces. In particular, OpenSubdiv has not imple-
mented computation of limit surface locations and tangents for any
other scheme, which we need for evaluation of the basis functions
NI and their derivatives.

10.1 Partial derivatives
Given a mesh description and an input point (ξ 1, ξ 2) in parameter
space, OpenSubdiv is able to efficiently evaluate the basis functions
NI (ξ

1, ξ 2) and their first derivatives NI,α (ξ
1, ξ 2) for all control

control points I . As of version 3.2.0, it can also evaluate the second
derivatives NI,α β (ξ

1, ξ 2). This functionality was added specifically
for this project.

To evaluate the basis functions and their first derivative, Open-
Subdiv first isolates irregular vertices by adaptively subdividing
the control mesh, up to some user-specified maximum level. If the
parameter-space input point now lies in a regular patch, OpenSub-
div evaluates using standard bicubic B-spline basis functions for
that patch. If the parameter space input point is still in an irregular
patch, OpenSubdiv performs an approximate evaluation using a
Gregory patch.

Since our energy computations at each timestep always requires
evaluation at the same quadrature points we can avoid Gregory
patches altogether. To see this, note that for 4-point Gauss quadra-
ture on [0, 1], the smallest evaluation point is

1
2
*..
,
1 −

√
3
7
+

2
7

√
6
5
+//
-
≈ 0.0694 > 0.0625 = 2−4.

http://www.opensubdiv.org

SCA ’17, July 28-30, 2017, Los Angeles, CA, USA David Clyde, Joseph Teran, and Rasmus Tamstorf

By symmetry, it follows that for our 4 × 4 point quadrature rule on
[0, 1]×[0, 1], all evaluation points are at least distance≈ 0.0694 away
from the boundary. Additionally, note that if we set OpenSubdiv to
use sa adaptive subdivisions, then any remaining irregular patches
must lie in the 2−sa × 2−sa corner regions of the original square.
Thus, if we choose an adaptive subdivion level sa ≥ 4, we find that
our quadrature points never fall in an irregular patch, which lets us
eliminate the Gregory patch approximations as a possible source
of error. By the same reasoning, any choice sa > 4 has no effect
on the accuracy of the weights. Thus, the current code uses sa = 4
as the number of adaptive subdivision levels. If we wanted to use
a different quadrature rule besides the current 4 × 4 Gauss points
per patch, we would still be able to avoid Gregory patch evaluation.
However, the simple analysis above would have to be repeated to
find the best number of adaptive subdivisions for the new scheme.

11 IMPLEMENTATION
For the actual implementation we separate the computations into a
precomputation phase, and steps that have to be repeated within
the main simulation loop.

11.1 Precomputations
The mass matrix is assumed constant in our simulations and can be
computed directly in the precomputation phase using Equation (11).

For each Newton iteration and/or time step during the simula-
tion we need to evaluate Equation (17) along with the associated z
derivatives. This requires evaluation of z at all quadrature points,
which can be done using Equation (15). We note, however, that the
derivatives of the basis functions in these expressions will always
be evaluated at the same locations. We precompute these weights
using OpenSubdiv.

Finally, obtaining E from G requires the basis vectors ḡj and our
numerical integration requires J̄ . These depend only on the rest
configuration, so we precompute and store them for all quadrature
points at the start of the simulation.

11.2 Simulation loop
Inside themain simulation loopwe compute the hyperelastic energy
Hessian contribution from each quadrature point ξ (r) and then sum
these to build the full energy Hessian. To reduce synchronization
in our parallel implementation, one thread sums the contributions
from all quadrature points within a specified element. The per-
element stiffness matrix contributions are built concurrently, and
are then added into the final Hessian one at a time. Combining
the contributions per element works well because with subdivision
surfaces, all ξ (r) within a given element necessarily have the same
stencil (that is, will share the same set of nonzero NI).

The algorithm is summarized Algorithm 1, where the bulk of
the work happens in line 5. As described in §9, we can compute the
strain E(z) and its z derivatives if we know the values, z-gradients,
and z-Hessians for aα · aβ , aα · a3,β , and a3,α · a3,β .

The terms aα · aβ are trivial to compute in terms of z. To clarify
the dependence of the remaining terms on z, we introduce the

Algorithm 1 Parallelization Structure for Energy Computation
1: Initialize overall system energy/gradient/Hessian as 0.
2: for all quad faces of the control cage do {in parallel}
3: Initialize face energy/gradient/Hessian contributions as 0.
4: for all quadrature points in the chosen face do {in serial}
5: Compute energy/gradient/Hessian at this quadrature

point and add these to the face’s contributions.
6: end for
7: Add the face’s total accumulated energy/gradient/Hessian

contributions into the final system. {Use mutex to avoid race
conditions!}

8: end for

notation ã3 = a1 × a2 andm = ∥ã3∥. Then we have:

a3 =
ã3
m

a3,α =
ã3,α
m
−

ã3
m2m,α

m,α =
ã3 · ã3,α

m
.

After some simplification, we can rewrite

aα · a3,β = −
aα,β · ã3

m

a3,α · a3,β =
1
m2 ã3,α · ã3,β −

1
m4 (ã3 · ã3,α) (ã3 · ã3,β).

Thus, we can compute E and its z derivatives by the chain and
product rules if we know the values, gradients, and Hessians of the
simple ‘building block’ scalar quantities

m aα · aβ aα,β · ã3 ã3 · ã3,α ã3,α · ã3,β .

We remark that the strain E(z) and its z derivatives are functions
of our kinematic assumptions alone. As such, all of the above is
equally applicable for other constitutive models.

11.3 Code structure
We now give a slightly simplified but fairly explicit description of
the actual implementation.

For storage, we create a struct Entry that holds a double, a 15-
dimensional vector, and a symmetric 15 × 15 matrix. These should
be interpreted as some scalar value together with its gradient and
Hessian with respect to z. Next, we define a second struct Gdata
that holds G and its gradient and Hessian. In other words, Gdata
stores 3 Entry structs, one for each nonconstant unique entry in G.

Our low-level implementation consists of ‘building-block’ func-
tions named add_a1a1, add_a1a2, and so on going through the list
above. These functions accept as input an arbitrary double scalar,
plus a reference to Entry. They add (scalar)·(specified building block)
to the input Entry.

The next complexity level consists of functions with names like
addG13Linear, addG11Quadratic, and so on for the other terms.
These functions take as input the value of ξ 3 and a reference to
Gdata giving the current status of G, and they call some combina-
tion of building-block functions to add the term described in their
name into G. So for example, addG11Quadratic adds the value,

Subdivision FEM for nonlinear Kirchhoff-Love thin shells SCA ’17, July 28-30, 2017, Los Angeles, CA, USA

gradient, and Hessian of (ξ 3)2a3,1 · a3,1 to the (1, 1) Entry in our
Gdata object.

We create a function potentialEnergyHelper which accepts a
reference to Entry (called LocalEnergy), a const reference to Gdata
(called G), and a const reference to a ConstitutiveModel class. It
also takes in the precomputed basis vectors ḡj and the orthotropy
direction matrix D. This function computes Ẽα β and its z deriva-
tives, and then calls a member function in the ConstitutiveModel
class to buildψ (Ẽ), ∂ψ

∂Ẽ
, and ∂2ψ

∂Ẽ∂Ẽ
. The chain rule is then used to

produce the derivatives ∂ψ
∂z and ∂2ψ

∂z∂z , and the local energy con-
tribution ψ and its z derivatives are added to LocalEnergy. The

Hessian ∂2Ẽα β
∂z∂z is mostly dense, so we have not made many opti-

mizations here. Instead, that computation essentially follows the
steps a rudimentary automatic differentation would use.

Finally, we create the top-level function potentialEnergy. This
function initializes a Gdata object with all entries 0. Then we create
the midsurface version of G by calling all the functions that add ξ 3-
constant terms.We pass our Gdata object into potentialEnergyHelper
to add the relevant contributions to the energy and its derivatives.
Next, we create the ξ 3 = τ

2 version ofG by calling all functions that
add ξ 3-linear and ξ 3-quadratic terms and passing in ξ 3 = τ

2 . Once
again, we call potentialEnergyHelper to add contributions from
this Simpson point. Lastly, we create the ξ 3 = − τ2 version of G by
calling only the functions adding ξ 3-linear terms and passing in
ξ 3 = −τ . We call potentialEnergyHelper a third time and we are
done with our energy derivative computation at this Gauss point.

11.4 Optimizing low-level functions
It is possible to store a building-block’s gradient and Hessian in
some sparse form instead of recomputing the entries each time it
is used. This ‘precomputation’ would still need to be repeated for
every Gauss point and for each new energy evaluation, but it can
potentially help if the same building block is added many times.
The extra step is worth our runtime for some building blocks more
than others.

Several of the building-block functions described above require
very little computation to add the required terms. For example, the
Hessian of a1 · a1 has 3 nonzero entries, all of which are constant.
Other building-block functions are more complex, but are not called
very often. For example, the a3,1 · a3,2 building block is relatively
expensive to add, but is only added once since it appears in just one
quadratic term.

In our current implementation, the only building block deriva-
tives we prestore are the gradient and Hessian ofm, and the gra-
dients of all building blocks involving ã3. We have found this to
provide a runtime-efficient balance between the cost of memory
allocation and the cost of recomputing the same entries multiple
times.

REFERENCES
Fehmi Cirak and Michael Ortiz. 2001. Fully C1-conforming subdivision elements for

finite deformation thin-shell analysis. Internat. J. Numer. Methods Engrg. 51, 7
(2001), 813–833. https://doi.org/10.1002/nme.182

Fehmi Cirak, Michael Ortiz, and Peter Schröder. 2000. Subdivision surfaces: A new
paradigm for thin-shell finite-element analysis. Internat. J. Numer. Methods En-
grg. 47, 12 (2000), 2039–2072. https://doi.org/10.1002/(SICI)1097-0207(20000430)47:
12<2039::AID-NME872>3.0.CO;2-1

R. Cools. 1997. Constructing cubature formulae: the science behind the art. Acta
Numerica 6 (1 1997), 1–54. https://doi.org/10.1017/S0962492900002701

Theodore F. Gast and Craig Schroeder. 2014. Optimization Integrator for Large
Time Steps. In Eurographics/ ACM SIGGRAPH Symposium on Computer Anima-
tion, Vladlen Koltun and Eftychios Sifakis (Eds.). The Eurographics Association.
https://doi.org/10.2312/sca.20141120

Seth Green and George Turkiyyah. 2004. Second-order accurate constraint formulation
for subdivision finite element simulation of thin shells. Internat. J. Numer. Methods
Engrg. 61, 3 (2004), 380–405. https://doi.org/10.1002/nme.1070

T.J.R. Hughes, J.A. Cottrell, and Y. Bazilevs. 2005. Isogeometric analysis: CAD, finite
elements, NURBS, exact geometry and mesh refinement. Computer Methods in
Applied Mechanics and Engineering 194, 39-41 (2005), 4135–4195. https://doi.org/10.
1016/j.cma.2004.10.008

Bert Jüttler, Angelos Mantzaflaris, Ricardo Perl, and Martin Rumpf. 2016. On numerical
integration in isogeometric subdivision methods for PDEs on surfaces. Computer
Methods in Applied Mechanics and Engineering 302 (2016), 131–146. https://doi.org/
10.1016/j.cma.2016.01.005

L. Kharevych, Weiwei Yang, Y. Tong, E. Kanso, J. E. Marsden, P. Schröder, and M.
Desbrun. 2006. Geometric, variational integrators for computer animation. In
Proceedings of the 2006 ACM SIGGRAPH/Eurographics symposium on Computer
animation (SCA ’06). Eurographics Association, 43–51. https://doi.org/10.2312/
SCA/SCA06/043-051

Josef Kiendl, Ming-Chen Hsu, Michael C.H. Wu, and Alessandro Reali. 2015. Iso-
geometric Kirchhoff-Love shell formulations for general hyperelastic materials.
Computer Methods in Applied Mechanics and Engineering 291 (2015), 280–303.
https://doi.org/10.1016/j.cma.2015.03.010

Quan Long, P. Burkhard Bornemann, and Fehmi Cirak. 2012. Shear-flexible subdivision
shells. Internat. J. Numer. Methods Engrg. 90, 13 (2012), 1549–1577. https://doi.org/
10.1002/nme.3368

R. Radovitzky and M. Ortiz. 1999. Error estimation and adaptive meshing in strongly
nonlinear dynamic problems. Computer Methods in Applied Mechanics and Engi-
neering 172, 1-4 (1999), 203–240. https://doi.org/10.1016/S0045-7825(98)00230-8

Bernhard Thomaszewski, Markus Wacker, and Wolfgang Straßer. 2006. A Consis-
tent Bending Model for Cloth Simulation with Corotational Subdivision Finite
Elements. In Proceedings of the 2006 ACM SIGGRAPH/Eurographics Symposium on
Computer Animation (SCA ’06). Eurographics Association, Aire-la-Ville, Switzerland,
Switzerland, 107–116. http://dl.acm.org/citation.cfm?id=1218064.1218079

Roman Vetter, Norbert Stoop, Thomas Jenni, Falk K. Wittel, and Hans J. Herrmann.
2013. Subdivision shell elements with anisotropic growth. Internat. J. Numer.
Methods Engrg. 95, 9 (2013), 791–810. https://doi.org/10.1002/nme.4536

Anna Wawrzinek, Klaus Hildebrandt, and Konrad Polthier. 2011. Koiter’s Thin Shells
on Catmull-Clark Limit Surfaces. In Vision, Modeling, and Visualization (2011),
Peter Eisert, Joachim Hornegger, and Konrad Polthier (Eds.). The Eurographics
Association. https://doi.org/10.2312/PE/VMV/VMV11/113-120

Anna Wawrzinek and Konrad Polthier. 2016. Integration of generalized B-spline
functions on Catmull-Clark surfaces at singularities. Computer-Aided Design 78
(2016), 60–70. https://doi.org/10.1016/j.cad.2016.05.008 {SPM} 2016.

https://doi.org/10.1002/nme.182
https://doi.org/10.1002/(SICI)1097-0207(20000430)47:12<2039::AID-NME872>3.0.CO;2-1
https://doi.org/10.1002/(SICI)1097-0207(20000430)47:12<2039::AID-NME872>3.0.CO;2-1
https://doi.org/10.1017/S0962492900002701
https://doi.org/10.2312/sca.20141120
https://doi.org/10.1002/nme.1070
https://doi.org/10.1016/j.cma.2004.10.008
https://doi.org/10.1016/j.cma.2004.10.008
https://doi.org/10.1016/j.cma.2016.01.005
https://doi.org/10.1016/j.cma.2016.01.005
https://doi.org/10.2312/SCA/SCA06/043-051
https://doi.org/10.2312/SCA/SCA06/043-051
https://doi.org/10.1016/j.cma.2015.03.010
https://doi.org/10.1002/nme.3368
https://doi.org/10.1002/nme.3368
https://doi.org/10.1016/S0045-7825(98)00230-8
http://dl.acm.org/citation.cfm?id=1218064.1218079
https://doi.org/10.1002/nme.4536
https://doi.org/10.2312/PE/VMV/VMV11/113-120
https://doi.org/10.1016/j.cad.2016.05.008

	Abstract
	1 Related work
	2 Kirchhoff-Love kinematics
	2.1 Deformation gradient and strain tensor

	3 Orthotropic constitutive model
	4 Governing PDE
	4.1 Weak form derivation
	4.2 Strong form and boundary terms

	5 Spatial discretization
	6 Quadrature
	7 Boundary conditions
	8 Time discretization
	9 Derivatives of
	10 Evaluation of subdivision surfaces
	10.1 Partial derivatives

	11 Implementation
	11.1 Precomputations
	11.2 Simulation loop
	11.3 Code structure
	11.4 Optimizing low-level functions

	References

