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All’s Well That Ends Well: Supplementary Proofs

This document complements the paper “All’s Well That Ends
Well: Guaranteed Resolution of Simultaneous Rigid Body Impact”
and provides detailed proofs of several claims therein: that pairwise
Gauss-Seidel-like algorithms and Generalized Reflections, when
modified according to the template shown in Algorithm 3, satisfy all
the inexact impact operator desiderata, and hence are guaranteed
to terminate, just as are their exact arithmetic counterparts.

A DETAILED INEXACT ARITHMETIC PROOFS

Here we will prove the claims in §7: that both the inexact pairwise
Gauss-Seidel method described in Algorithm 3, as well as the Smith
et al’s Generalized Reflections algorithm [2012], satisfy the inexact
impact operator axioms (eENORM)-(eMOD). We will assume the
following computation model: real numbers are approximated using
floating-point arithmetic, with machine epsilon ¢ < 1 and minimum
representable magnitude n < ¢. We assume that no intermediate
calculation overflows; we then have an associated rounding operator
fl[x], so that for every exact quantity x,

x—|xle—n < fl[x] < x+ |x|e + 7.

For calculations we will make use of the weaker, more convenient
bound

x —|xle —e < fl[x] < x + |x|]e + &.

Arithmetic operations and square roots are assumed to take place
in infinite precision, and then rounded; we will write fI[E] to denote
that every operation in the expression E is performed in this way,
e.g fl[x + y] = fl[fl[x] + fl[y]]. Finally, we will assume that q; and
small integer constants are represented exactly, but that M, M1
and N must be rounded.

If ¢ is too large, the properties (eNORM), (¢éDRIFT), and (éMOD) can-

not be guaranteed. We will prove that both pairwise Gauss-Seidel
and Generalized Reflections satisfy these properties for ¢ sufficiently
small, and give a constructive bound for ¢ in terms of the magnitudes
of input quantities like qo, M, N, etc. For both algorithms, we will
first look at drift, and construct a C which is used in the definition of
(eDRIFT) as a certificate that energy cannot grow unbounded over
the course of several iterations. The proof of no drift will already
impose a bound on ¢; intuitively, if the machine precision is too
large, the renormalization of the velocity after every iteration in
Algorithms 3 and 4 itself introduces so much error into the compu-
tation of §;4+1 that despite the renomalization, its magnitude cannot
be bounded.

Once we have constructed a C, we also need an €. We will show
that (eNORM) imposes a lower bound of €, and that this lower bound
decreases to zero as ¢ decreases. We end by proving (eMOD) hold,
provided that € is not too large. The upper bound is constant, and
the lower bound shrinks as ¢ shrinks, so that it is always possible to
find an € if ¢ is sufficiently small.

A.1 Pairwise Gauss-Seidel

In this section, we derive an € and C for which the modified pair-
wise GS algorithm described in section 7 satisfies the six criteria
(eNORM)-(eMOD). Three of these, (eKIN), (ONE) and (eVIO), are
obvious from the construction of the algorithm. We first prove
(eDRIFT) by induction on the iteration i: suppose it holds for the
first i iterations of Algorithm 3. Then

1 . 1 .
Enqini,, < Euqon,@ +C

A

laill3, < llqoll3, +2C
AminllQill < Amaxllqolls +2C

lqillz < a1 + p1VC,

for
a1 = [ 2mEE ol
Amin
Br = V2.

where Apin and Amax are the minimum and maximum eigenvalue
of M, respectively. Since ||q;llo < ||qill2 we also have that

l4illeo < a1 + B1VC.

We now bound p = fI[q; — 2(q;, n)Mn], where n is some con-
straint gradient selected by Algorithm 3. The following fact will be
useful: for a sequence of numbers x1, . .., xy, it can be shown by
induction on d that

d d d
fl in - Zﬂ[x,-] < (d + Z |ﬂ[xl-]|)g(1 +e)d1,
j=1 j=1 j=1
We now proceed to bound p. First,
lArg/n'] - /o' < (|q]| [Aln']] + 1) £

where n/ denotes the jth coordinates of the vector n. We can write
these bounds as

[Algin’) - gpn/| < ¢ (a2 + f2C)

where

ag = a1(|[nfle(1+¢) +6) +1
B2 = Pr(lInlleo(1 + €) + £).
Since
a0’ < llgilleoInlles < Inlloo(ers + B1VE),
summing over j gives
11 [(@:> ] = (@i, )| < & (a3 + 5 VC)
where

as = (1 + ||n|lag + 2ea2)d(1 + e)d_l

B3 = (Inllfy + 2¢f2)d(1 + )41
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Switching gears,

[ 02)) - (7)) < s+

and
[ [0/] =0/ < (inlls + De,
so that ' .
'ﬂ [(Mfl)kj nj] _ (M—l)kj nj‘ < ea
where

=7 ol o] 3

Summing again over j we can bound

a[(m )] = (M1n)| < eas

where
a5 = (1+|M7Y  Inlleo + 2604) (1 + )41
Now since
‘ﬂ [(M_ln)k” <d|[M7Y_ linlle + eas
we have that

fl [(qi,n) (M_ln)j] —{(qi,n) (M_ln)j‘ < e(ag + /36\/6)

for
6 =1+ (1+2a3)d [M7!|_ Inlleo + 2asdlinllcoas + 2a3s
Po = 2B5d ||M7Y| _ lInlleo + 2a5dlnllocy + 225 s,

where we have made liberal use of the fact that £ < ¢ to simplify
the above expressions. Then

‘ﬂ [—2<qi,n) (M'n)’ ] +2(gi,m) (M~'n)’ ‘
<e(a7 + p7VC)
where
a7 = 1+ 4a + 2d ||M7Y]| _ IInllZas
Br = aps +2d | M| _ InliZp1.

Finally, we bound p in terms of p = §; — 2(q;, n)M~'n. We have
that

o' - /| < e(es + B VO) (@

for
ag =1+ a1 +2a7 + 2d||M71||w IIn||2, a1
Ps = 1 +2p7 + 2d [M7Y| _ InliZ 1.

Next, we need to bound the norm fl [||plls] in the denominator
of the coefficient of the velocity update step. We can use the fact
that

Ipllar _ N14illar _ llqollar + V2C

V/lmin - Vlmin - V/lmin

| [MMTp7] - MM/ < e(ag + o V)

/] < lIplleo <

to get
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for

@ =1+ (2 +3/[M|lso) (ag + M)

V/lmin
Bo = (2 + 3 MIleo) (ﬂs g ) .

Amin

The summation formula then gives
| [(Mp)*] = (Mp)*| < e(atro + P10 VO)
where

[1qollar

min

P1o =dfo + (d”M”oof‘,% + eﬁg) d(1+¢)?!

Next, combining the last several bounds,

|ﬂ [P] (Mf))j] -p/ (MP)j| < e(an + P11VC + y110)

a0 = dag + (1 +d|[M|lo + gag) d(1 +¢)@!

for

dIMlleo 1ol
M + 2

a1 = aga1o
Amin
[1qollar
+ 210 + s [ M o) et
VAmin
llqollarv2
P = 2d||M||m%+ + 2agfro + 201058
min
[19ollar
+2(B1o + fsd | MIloo)
V}Lmin
2
+2(e0 + asd[[Mlleo) [ 7—
min
_ 2d|IM|le 2

+ 2P 10 + 2(f10 + PsdllM|loo)

Amin Amin

We apply the summation formula a second time to get the squared

norm,
|t [p” Mp] - p"Mp| < £ (@12 + 12 VC + y120)) ,

for

a1z = dagy + (1 +dll@ollas + deany)d(1 + )47

ﬁ]z = dﬁll + (d\/§+ dEﬁ]])d(l + S)d71

Y12 = d}’ll + d2£yll(1 + E)d_l.

We can rewrite this bound in more convenient form, by completing

the square, in anticipation of taking the square root:
T - T
|l [p" Mp] - p” Mp|
2

2
Ss(zf/% +\/E\/E) +£(a12— fy%)

Finally, we have a bound on the norm of p:

[EL[1BlIac] = lIpllagl < ears + P13 VC),
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where
. 1+e¢ ﬂ12 /312
a13 =1+ ||qollpr + —— a2 —
13 Qollar NG ( ‘ g +3 i
1+¢
P13 = NG Vriz-

Notice that since |[M||lco > Amin, Y12 > 1 and so the denominators
in a13 are bounded well away from zero.

The last piece we need for computing ¢;+1 is the norm of the
initial velocity, [|qo|lss. To begin with,

|ﬂ [Mqu{)] - Mkj%| < eaia
where
a14 = 2[IMlloo 1golleo + llqolles + 1.

Since |Mkj q{)| < dlIM|leollqolloo, applying the summation formula
yields

[ [(Mao)’] - (Mqo)’| < s
for
ars = darg + (1 + d||M|loolldolloo + ea14) d(1 + £)¢
Then
Il [a) (Mao)'| - @5 (Mao)'| < eass
for

. 2 .Jj
a16 = dIMIleol1qollE + g llas + 1.

Applying the summation formula a second time gives

0012, ] g lZ| < earr

for
a7 = dag + (1+ 1403, + ear) d(1 + ).
Finally
[fL{1Iqollar] = 1qollas] < ea1s (6)
with

_ 1+¢
a18 = 1+ |1Qollp + —=aa7.

Ve
Combining equations (4) and (6) gives
It [l1aollzep’| = gollarp’| < e(es + proVC)
where

lIgoll3, + 2 1qollas

8
V min \' Amin

. 2 .
Bro = lldollmy| 7 + 201184 + 2|lqollarBs + 2018 Ps.
)'min Amin

Now, we are at last prepared to bound the next velocity iterate

o _ﬂ[M],

i+l 1pllae

apg =1+ +2[|qollas + 2a138

Suppose that ||pllas > e(a13 + ﬁ13\/6). Then by the previous
bound, and equation (5),

a0 + f20VC
lIpllar — e(a13 + P13 VO)

o _ Nollmp’ | _
1 ipllv

™

for
. .2
l1Gollar llqoll .
= 19olim a3 + 2a19 + M 1 ol
V/lmin V/lmin
1901l a1 lqollarv2
ﬁzo 4 ﬂ + Zﬁ + —— q \/—
V/lmln V)’mln
Therefore
. 2 .2
lqis115, — Naoll3 I
+ C
< 200 Ay Ve —— 220+ P VC
lIpliar — e(e13 + B13VO)
2
a20 + PaoVC
+ eAmaxd .
lIpllar — e(e13 + P13 VO)
Let
a1 = 4/1max\/aa20 + ‘—24/1maxda§()
||q0||M
P21 = 4Amax VdPoo + 8Amaxdar20 B20
” 0|]W
1
Y1 = ‘Mmaxdﬂzo

0112,

Nlgollar 2
LEmma A1, Ife < San €< o and

o1 + e +aean (- erm) (ol - 2eas)’
<
4(VZ + epry)?

then pairwise Gauss-Seidel satisfies (¢ DRIFT). Notice that these condi-
tions are satisfied if € is sufficiently small.

4 — 2¢ey01

Proor. Take
_1 ((IIQOIIM - 2ea13)?
2

4(V2 + ep13)?
efor + \/ezﬁgl +4ea21(2 — €y21)
+
4 — 2eyn
Since £ < ||QO||M,
a3
. 1.
g0llas = V2C€ = e(ars + f13VC) = < lldolias
and

lIpllar — e(a13 + Br3VO)

hence the bound in equation (7) is valid. Moreover we can substitute
this inequality into the bound on ||q;+1 ||]2M to get

> Dol
=3 qollps

[l1ge+113, = Idol§ ] < e(aar + 21 VC + y21€).
Then ;41 satisfies (éDRIFT) whenever
(2 = ey21)C — &fz1 — €021 <0,
and in particular, whenever
ef1 + \/ezﬁgl +4e021(2 — €y21)
z 4 - 2¢ey2 '

ACM Transactions on Graphics, Vol. 36, No. 4, Article 1. Publication date: July 2017.



1:4 « E.Vougaet. al

We now prove the remaining properties, which are relatively
straightforward. First, we have that

LEmmA A.2. Let C be as in the previous lemma, and suppose

N \/g Amax\/a(azo + ﬁZO\/E)
llqol(llqoll + V2C)

and
2a00 + 2ﬂ20‘/€
1qollaz(Iqoar — V2C)
Then pairwise Gauss-Seidel satisfies (¢ NORM). Notice that both right-
hand sides vanish as ¢ decreases.

€ > Zelmax\/g

Proor. Let C be as in the previous lemma. By construction of
the algorithm and (eVIO) we know that the value of A is

A ==2(qi,n) > 2€llq;llar = 2€(llqollar + V2C)

where the last inequality follows from (e DRIFT).
From the bound (7) on the components of ¢, we have that

\/—20620 +2p20VC

llellar < eAmax Vd N
1qollar
and this is less than eA when
2020 + 2P20VC .
Mmaxx@”%# < 2¢%(llqolln + V20).

Lastly since ||q;llar > [1qolla — V2C, we have that [lelly < §114:ll
whenever

2020 + 220 VC

€ > Zelmax\/g .
lgollas (o ar — V2C)

O
LEmMA A.3. Pairwise Gauss-Seidel satisfies (e MOD) when € < 1.

PROOF. At every iteration where a constraint with gradient n is
violated,

. . -1
1qi+1 — Qilla = IAM™ " n + cllpg

> Al = llella
> (1-¢)|A|
> 0.

A.2 Generalized Reflections

The generalized reflection operator of Smith et al. [2012] improves on
pairwise Gauss-Seidel by guaranteeing preservation of symmetries
and more accurately modeling shock propagations, at the cost of
an R that is more expensive to compute. Algorithm 4 shows how
to modify it so that it satisfies all the inexact desiderata required
for guaranteed termination. Notice that these modifications mirror
those of Gauss-Seidel: constraints whose violation does not exceed
a threshold are pruned from consideration every time a reflection
is applied, and the velocity is renormalized every step to prevent
energy drift.

Computing A at each iteration of Algorithm 4 requires solving a
quadratic program (QP). Let A be the exact solution to this QP, ¢ the
corresponding positivity constraint Lagrange multipliers, and A, £
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Algorithm 4 Inexact Generalized Reflections

1: function RESOLVEIMPACTSAPPROX(q, g, €)

2 N < AcTIVECONSTRAINTGRADIENTS(q)

3 qo «— q

4 fori:=1,00do

5: Ny « VioLATEDN(q;) // qiTNV < —€llqillarl
6 if Ny = 0 then

7 return q;

8 end if

9

A argmin, [MT'NyA+2qil3, st 120

- ”qOH[\l - -1
10: i+1 S T o i+ M N‘/A
qi+1 [lqi+M=INv A|| ,, (ql )

11: end for
12: end function

the computed solution. We assume that 1 approximately satisfies
the KKT conditions of the QP,

INEMTINY 2+ 2NT Qs - € < eralldiling

where k7 is an accuracy parameter independent of §;; notice that
this condition is a standard relative error termination criterion in
numerical QP codes.

The goal now will be to bound the intermediate step

p="fl[q+ M Ny

in terms of the true step p = q; +M~! Ny A; the proof of (e DRIFT) will
then follow directly from identical calculations to that in pairwise
Gauss-Seidel. Once we have a value of C, we will prove that inexact
GR satisfies (eNORM) and (eMOD). As in the case of Gauss-Seidel,
(eKIN), (ONE), and (¢VIO) all hold by construction of Algortihm 4.

Let Ny C Ny be the set of constraints that are active in the
inexact QP solution, and 1 4 the corresponding parts of 1. The matrix
N$M ~INy has ones along the diagonal, and off-diagonal entries of
magnitude at most one; therefore by the Gershgorin Circle Theorem
its maximum eigenvalue is at most m, the number of total constraints
in N. Then we have the following useful bound on A:

s INAM™'NaZallz
Alls = 12alleo < —F———

. VA|INTM™'NaZall2

m

Vd

< ?(HZNiqinm + ex111q:1lar)

vd ( 2m . )
— /1_||Qi||M+fK1||qi”M
max

IA

K2 + p2 \/E,
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with
2Vd )
Ky = — y
2 Amax m qollpm
2Vd  exy
(2 ) g
He (Amax m )

where as usual we have used €2 < ¢ to simplify expressions.
Now for n; the jth row of Ny, we have the bound

|ﬂ [nj?/ik] - n}c/ik| < &(k3 + p3VC)
where
k3 = 3||Nlleok2 + 2Kk2 + 1
#3 = 3|INlleopiz + 2p2,

so applying the summation formula gives

o [ (5] = (v Y| < etia + uVO)

for
k4 = (2k3 + 1+ m||N|lcok2) d(1 + e)d_1
Ha = (2413 + ml[Nlloopsz) d(1 + )4~
Then
1ﬂ [(M—l)"f (sz)f] — (M) (sz)f\
< &(xs + psVO)
for

K5 =1+ (5IIM ™ floo + 2)ica + 2(IIM ™~ floo + 1IN lloorcz
ps = SIM oo + 2)pta + 2(IM oo + DINleopiz,
so that applying the summation formula gives
‘ﬂ [(M_INVZ)j] - (M_lNV/T)j| < (ke + ;16\/5)
for
K6 = dics + (1 + dIM ™ loo N llookz + k5)d(1 + €) 47
o = dpis + (5 + dlIM ™ oo [ Nlloopz)d(1 + ).

Before we can bound p, we need to relate the impulse using the
approximate multipliers A to that using the exact multipliers. We
can do so by making use of the fact that the QP’s KKT conditions
are nearly satisfied for A:

IM~INyA - M7 Ny Ay [13,

= A= DT (NEMTINyA - NEMTINy 2)

< —(LE = (L&) + 114 - Alleo Vi1 1g:llns
<12 = Aleo V1% (14 11ag

< (I1loo + 1Zlleo) Vdi12% (Il qollag + V2C)

< 2k + paVC) Vi1 (Il gollag + V20)

< 52(K7 + /17\/6 + v7C)

for
k7 = 2[|Qollp Vdkazk:
p7 = 2V2dxarr + 21| qolla Vi iz
V7 = 2@K1 1.
Completing the square gives

IM~'Ny A = M Ny Allo

1

< M~ Ny A = M~ Ny Alim

Amax

< e(is + psVO)

with
2
1 H7 Hy
= — + —_—
8 Amax (ZW ’K7 4vy )
It Vv
g =—-
Amax
Therefore

fl [(M‘INVi)j] - (M_INVA)j’ < (ko + j19VC)

where simply k9 = k¢ + kg and pg = pg + pg. We then have
|I3J - P]| < e(k10 + p10VO)

for

K10 = 2K9 + d° M~ loolINY [lookz + 1 +1

p10 = 29 + d* M loolINV lloopiz + i

The proof of (¢€DRIFT) now follows identically the arguments for
pairwise Gauss-Seidel, with k19 and pjo taking the place of ag
and fi3. As in the pairwise GS case, construction of a C certifying
(eDRIFT) requires that ¢ be sufficiently small.

We now prove that GR satisfies the remaining properties, (eNORM) and

(eMOD).
LEmMMA A.4. Let C be as in the proof of (¢ DRIFT), and suppose that

a+ Va2 +b
€2 ——,
2
where
€2 )
a=—x1(lldollar +V20)
+ C
b= 4m5lmaxM,
V|| qollar
and

2a20 + 2f20VC

lIdollar(llgoar — V2C)
Then Generalized Reflections satisfies (e NORM). Notice that both
right-hand sides vanish as ¢ decreases.

€ > 2eAmax

PROOF. Since at least one constraint must be violated, by (eVIO),
INTM™ Ny Allz > 2¢llqlla — 251l liag
and
2€ — £2K1 .
A2 ———(llqollam + V20),

m
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where we have used (¢DRIFT) and again the fact that the largest
eigenvalue of N‘ZM’lNV is at most m.
From the bound (7) on the components of ¢, we have that

2 +2 C
lellg < e V2220 220 VC
l1qollar
and this is less than €||A||; when
2000 + 2 C 2¢ — &2
A VA2 2PNC _ j2em e VB,
l1qollar m

Rearranging gives
a0 + faoVC >0
Vdllgolar

and the first inequality above. Lastly since ||q;llar > [Iqollar — V2C,
we have that ||c[lpr < 5119; || whenever

2a20 + 220 VC
lQollar(lgoar — V2C)

as in the case of pairwise Gauss-Seidel. O

2
£ . [
€t — 63'<1(||‘10||M + V2C) — meAmax

€ > 2eAmax

At last we end with
LEMMA A5. Ife < 4, then Generalized Reflections satisfies (e MOD).

PROOF. At every iteration where a constraint is violated,

qi+1 = Qillae = IMTINY A+ cllp

> M~ Nollag = lielln

> \J2llAlellaillas — llella

> 20 lsellqsliag - exflIAllailla /2
> \J2llAlellaillar — ey/I20 14 llag /2.

The right-hand side is positive when € < 4. O
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