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All’s Well That Ends Well: Supplementary Proofs

This document complements the paper “All’s Well That Ends
Well: Guaranteed Resolution of Simultaneous Rigid Body Impact”
and provides detailed proofs of several claims therein: that pairwise
Gauss-Seidel-like algorithms and Generalized Re�ections, when
modi�ed according to the template shown in Algorithm 3, satisfy all
the inexact impact operator desiderata, and hence are guaranteed
to terminate, just as are their exact arithmetic counterparts.

A DETAILED INEXACT ARITHMETIC PROOFS
Here we will prove the claims in §7: that both the inexact pairwise
Gauss-Seidel method described in Algorithm 3, as well as the Smith
et al.’s Generalized Re�ections algorithm [2012], satisfy the inexact
impact operator axioms (�NORM)–(�MOD). We will assume the
following computation model: real numbers are approximated using
�oating-point arithmetic, with machine epsilon � < 1 and minimum
representable magnitude � < � . We assume that no intermediate
calculation over�ows; we then have an associated rounding operator
�[x], so that for every exact quantity x ,

x � |x |� � �  �[x]  x + |x |� + �.

For calculations we will make use of the weaker, more convenient
bound

x � |x |� � �  �[x]  x + |x |� + � .

Arithmetic operations and square roots are assumed to take place
in in�nite precision, and then rounded; we will write �[E] to denote
that every operation in the expression E is performed in this way,
e.g. �[x + �] = �[�[x] + �[�]]. Finally, we will assume that q̇i and
small integer constants are represented exactly, but that M , M�1,
and N must be rounded.

If � is too large, the properties (�NORM), (�DRIFT), and (�MOD) can-
not be guaranteed. We will prove that both pairwise Gauss-Seidel
and Generalized Re�ections satisfy these properties for � su�ciently
small, and give a constructive bound for � in terms of the magnitudes
of input quantities like q̇0,M , N , etc. For both algorithms, we will
�rst look at drift, and construct aC which is used in the de�nition of
(�DRIFT) as a certi�cate that energy cannot grow unbounded over
the course of several iterations. The proof of no drift will already
impose a bound on � ; intuitively, if the machine precision is too
large, the renormalization of the velocity after every iteration in
Algorithms 3 and 4 itself introduces so much error into the compu-
tation of q̇i+1 that despite the renomalization, its magnitude cannot
be bounded.
Once we have constructed a C , we also need an � . We will show

that (�NORM) imposes a lower bound of � , and that this lower bound
decreases to zero as � decreases. We end by proving (�MOD) hold,
provided that � is not too large. The upper bound is constant, and
the lower bound shrinks as � shrinks, so that it is always possible to
�nd an � if � is su�ciently small.

A.1 Pairwise Gauss-Seidel
In this section, we derive an � and C for which the modi�ed pair-
wise GS algorithm described in section 7 satis�es the six criteria
(�NORM)–(�MOD). Three of these, (�KIN), (ONE) and (�VIO), are
obvious from the construction of the algorithm. We �rst prove
(�DRIFT) by induction on the iteration i: suppose it holds for the
�rst i iterations of Algorithm 3. Then
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We now bound p̄ = �[q̇i � 2hq̇i ,niM�1n], where n is some con-
straint gradient selected by Algorithm 3. The following fact will be
useful: for a sequence of numbers x1, . . . ,xd , it can be shown by
induction on d that�������
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We now proceed to bound p̄. First,
����[q̇jinj ] � q̇jinj ��� 

⇣���q̇ji ��� ����[nj ]��� + 1
⌘
�

where nj denotes the jth coordinates of the vector n. We can write
these bounds as ����[q̇jinj ] � q̇jinj ���  �

⇣
�2 + �2

p
C
⌘

where

�2 = �1 (knk1 (1 + � ) + � ) + 1
�2 = �1 (knk1 (1 + � ) + � ).

Since ���q̇jinj ���  kqi k1knk1  knk1 (�1 + �1
p
C ),

summing over j gives
��� [hq̇i ,ni] � hq̇i ,ni��  �

⇣
�3 + �3

p
C
⌘

where

�3 = (1 + knk�1 + 2��2)d (1 + � )d�1

�3 = (knk�1 + 2��2)d (1 + � )d�1.
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Switching gears,
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where

�4 = 7 ���M�1���1 knk1 + 4 ���M�1���1 + 4knk1 + 3.
Summing again over j we can bound
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Now since �����
⇣
M�1n

⌘k � ����  d ���M�1���1 knk1 + ��5
we have that�����
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⌘ j � � hq̇i ,ni ⇣M�1n⌘ j ����  � (�6 + �6
p
C )

for

�6 = 1 + (1 + 2�3)d ���M�1���1 knk1 + 2�5d knk1�1 + 2�3�5
�6 = 2�3d ���M�1���1 knk1 + 2�5d knk1�1 + 2�5�3,

where we have made liberal use of the fact that �2 < � to simplify
the above expressions. Then

�����

�2hq̇i ,ni

⇣
M�1n

⌘ j �
+ 2hq̇i ,ni

⇣
M�1n

⌘ j ����
� (�7 + �7

p
C )

where

�7 = 1 + 4�6 + 2d ���M�1���1 knk21�1
�7 = 4�6 + 2d ���M�1���1 knk21�1.

Finally, we bound p̄ in terms of p = q̇i � 2hq̇i ,niM�1n. We have
that ���p̄j � pj ���  � (�8 + �8

p
C ) (4)

for

�8 = 1 + �1 + 2�7 + 2d ���M�1���1 knk21�1
�8 = �1 + 2�7 + 2d ���M�1���1 knk21�1.

Next, we need to bound the norm � [kp̄kM ] in the denominator
of the coe�cient of the velocity update step. We can use the fact
that
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The summation formula then gives
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Next, combining the last several bounds,
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We apply the summation formula a second time to get the squared
norm,

����
f
p̄TM p̄

g
� pTMp���  �

⇣
�12 + �12

p
C + �12C )

⌘
,

for

�12 = d�11 + (1 + d kq̇0kM + d��11)d (1 + � )d�1

�12 = d�11 + (d
p
2 + d��11)d (1 + � )d�1

�12 = d�11 + d
2��11 (1 + � )d�1.

We can rewrite this bound in more convenient form, by completing
the square, in anticipation of taking the square root:

����
f
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g
� pTMp���
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2p�12

+
p
�12
p
C

!2
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�212
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+
- .

Finally, we have a bound on the norm of p:

��� [kp̄kM ] � kpkM ��  � (�13 + �13
p
C ), (5)
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where

�13 = 1 + kq̇0kM +
1 + �p

�

*.
,

vt�������12 �
�212
4�12

������ +
�12

2p�12
+/
-

�13 =
1 + �p

�

p
�12.

Notice that since kM k1 � �min, �12 > 1 and so the denominators
in �13 are bounded well away from zero.
The last piece we need for computing q̇i+1 is the norm of the

initial velocity, kq̇0kM . To begin with,
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where
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�
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Combining equations (4) and (6) gives
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Now, we are at last prepared to bound the next velocity iterate

q̇ji+1 = �
" kq̇0kM p̄j

kp̄kM

#
.

Suppose that kpkM > � (�13 + �13
p
C ). Then by the previous

bound, and equation (5),
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+
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Let
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L���� A.1. If � < kq̇0 kM2�13
, � < 2

�21 , and

��21 +
q
�2�221 + 4��21 (2 � ��21)

4 � 2��21
 (kq̇0kM � 2��13)2

4(
p
2 + ��13)2

,

then pairwise Gauss-Seidel satis�es (�DRIFT). Notice that these condi-
tions are satis�ed if � is su�ciently small.

P����. Take

C =
1
2
*
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Since � < kq̇0 kM2�13
,

kq̇0kM �
p
2C � � (�13 + �13

p
C ) � 1

2
kq̇0kM
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kpkM � � (�13 + �13

p
C ) � 1

2
kq̇0kM ,

hence the bound in equation (7) is valid. Moreover we can substitute
this inequality into the bound on kq̇i+1k2M to get

���kq̇i+1k2M � kq̇0k2M k���  � (�21 + �21
p
C + �21C ).

Then q̇i+1 satis�es (�DRIFT) whenever

(2 � ��21)C � ��21 � ��21  0,

and in particular, whenever

C �
��21 +

q
�2�221 + 4��21 (2 � ��21)

4 � 2��21
.

⇤
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We now prove the remaining properties, which are relatively
straightforward. First, we have that

L���� A.2. Let C be as in the previous lemma, and suppose

� >

s

�
�max

p
d (�20 + �20

p
C )

kq̇0k (kq̇0k +
p
2C )

and

� � 2��max
p
d

2�20 + 2�20
p
C

kq̇0kM (kq̇0M �
p
2C )
.

Then pairwise Gauss-Seidel satis�es (�NORM). Notice that both right-
hand sides vanish as � decreases.

P����. Let C be as in the previous lemma. By construction of
the algorithm and (�VIO) we know that the value of � is

� = �2hq̇i ,ni > 2� kq̇i kM � 2� (kq̇0kM +
p
2C )

where the last inequality follows from (�DRIFT).
From the bound (7) on the components of c, we have that

kckM  ��max
p
d
2�20 + 2�20

p
C

kq̇0kM
and this is less than �� when

��max
p
d
2�20 + 2�20

p
C

kq̇0kM
 2�2 (kq̇0kM +

p
2C ).

Lastly since kq̇i kM � kq̇0kM �
p
2C , we have that kckM  �

2 kq̇i k
whenever

� � 2��max
p
d

2�20 + 2�20
p
C

kq̇0kM (kq̇0M �
p
2C )
.

⇤

L���� A.3. Pairwise Gauss-Seidel satis�es (�MOD) when � < 1.

P����. At every iteration where a constraint with gradient n is
violated,

kq̇i+1 � q̇i kM = k�M�1n + ckM
� |� | � kckM
� (1 � � ) |� |
> 0.

⇤

A.2 Generalized Reflections
The generalized re�ection operator of Smith et al. [2012] improves on
pairwise Gauss-Seidel by guaranteeing preservation of symmetries
and more accurately modeling shock propagations, at the cost of
an R that is more expensive to compute. Algorithm 4 shows how
to modify it so that it satis�es all the inexact desiderata required
for guaranteed termination. Notice that these modi�cations mirror
those of Gauss-Seidel: constraints whose violation does not exceed
a threshold are pruned from consideration every time a re�ection
is applied, and the velocity is renormalized every step to prevent
energy drift.

Computing � at each iteration of Algorithm 4 requires solving a
quadratic program (QP). Let � be the exact solution to this QP, � the
corresponding positivity constraint Lagrange multipliers, and �̄, �̄

Algorithm 4 Inexact Generalized Reflections

1: function R������I������A�����(q, q̇, �)
2: N  A�����C���������G��������(q)
3: q̇0  q̇
4: for i := 1,1 do
5: NV  V�������N(q̇i ) // q̇Ti NV < �� kq̇i kM1
6: if NV = ; then
7: return q̇i
8: end if
9: �  argmin� kM�1NV � + 2q̇i k2M s.t. � � 0
10: q̇i+1  kq̇0 kM

kq̇i+M�1NV �kM
⇣
q̇i +M�1NV �

⌘

11: end for
12: end function

the computed solution. We assume that �̄ approximately satis�es
the KKT conditions of the QP,

���NT
VM�1NV �̄ + 2NT

V q̇i � �̄ ���1  �2�1kq̇i kM
�̄ � 0

�̄ � 0

�̄ ? �̄ ,

where �1 is an accuracy parameter independent of q̇i ; notice that
this condition is a standard relative error termination criterion in
numerical QP codes.

The goal now will be to bound the intermediate step

p̄ = �
f
q̇i +M�1NV �̄

g

in terms of the true step p = q̇i+M�1NV �; the proof of (�DRIFT)will
then follow directly from identical calculations to that in pairwise
Gauss-Seidel. Once we have a value ofC , we will prove that inexact
GR satis�es (�NORM) and (�MOD). As in the case of Gauss-Seidel,
(�KIN), (ONE), and (�VIO) all hold by construction of Algortihm 4.
Let NA ⇢ NV be the set of constraints that are active in the

inexact QP solution, and �̄A the corresponding parts of �̄. The matrix
NT
VM�1NV has ones along the diagonal, and o�-diagonal entries of

magnitude at most one; therefore by the Gershgorin Circle Theorem
its maximum eigenvalue is at mostm, the number of total constraints
in N . Then we have the following useful bound on �̄:

k�̄k1 = k�̄Ak1 
kNT

AM
�1NA�̄Ak2
m


p
d kNT

AM
�1NA�̄Ak2
m


p
d

m
(k2NT

A q̇i k1 + ��1kq̇i kM )


p
d

m

 
2m
�max

kq̇i kM + ��1kq̇i kM
!

 �2 + µ2
p
C,
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with

�2 = *
,
2
p
d

�max
+
��1
m

+
- kq̇0kM

µ2 = *
,
2
p
d

�max
+
��1
m

+
-
p
2,

where as usual we have used �2 < � to simplify expressions.
Now for nj the jth row of NV , we have the bound

����
f
nkj �̄

k
g
� nkj �̄k

���  � (�3 + µ3
p
C )

where

�3 = 3kN k1�2 + 2�2 + 1
µ3 = 3kN k1µ2 + 2µ2,

so applying the summation formula gives
�����

⇣
NV �̄

⌘ j � � ⇣
NV �̄

⌘ j ����  � (�4 + µ4
p
C )

for

�4 = (2�3 + 1 +mkN k1�2) d (1 + � )d�1

µ4 = (2µ3 +mkN k1µ2) d (1 + � )d�1.
Then �����

⇣
M�1

⌘k j ⇣
NV �̄

⌘ j � � ⇣
M�1

⌘k j ⇣
NV �̄

⌘ j ����
 � (�5 + µ5

p
C )

for

�5 = 1 + (5kM�1k1 + 2)�4 + 2(kM�1k1 + 1)kN k1�2
µ5 = (5kM�1k1 + 2)µ4 + 2(kM�1k1 + 1)kN k1µ2,

so that applying the summation formula gives
�����

⇣
M�1NV �̄

⌘ j � � ⇣
M�1NV �̄

⌘ j ����  � (�6 + µ6
p
C )

for

�6 = d�5 + (1 + d kM�1k1kN k1�2 + �5)d (1 + � )d�1

µ6 = dµ5 + (µ5 + d kM�1k1kN k1µ2)d (1 + � )d�1.
Before we can bound p̄, we need to relate the impulse using the

approximate multipliers �̄ to that using the exact multipliers. We
can do so by making use of the fact that the QP’s KKT conditions
are nearly satis�ed for �̄:

kM�1NV � �M�1NV �̄V k2M
= (� � �̄)T (NT

VM�1NV � � NT
VM�1NV �̄)

 �h�, �̄ i � h�̄, � i + k� � �̄k1
p
d�1�

2kq̇i kM
 k� � �̄k1

p
d�1�

2kq̇i kM
 (k�k1 + k�̄k1)

p
d�1�

2 (kq̇0kM +
p
2C )

 2(�2 + µ2
p
C )
p
d�1�

2 (kq̇0kM +
p
2C )

 �2 (�7 + µ7
p
C + �7C )

for

�7 = 2kq̇0kM
p
d�2�1

µ7 = 2
p
2d�2�1 + 2kq̇0kM

p
d�1µ2

�7 = 2
p
2d�1µ2.

Completing the square gives

kM�1NV � �M�1NV �̄k1

 1
�max

kM�1NV � �M�1NV �̄kM

 � (�8 + µ8
p
C )

with

�8 =
1

�max
*.
,

µ7
2p�7

+

vt�������7 �
µ27
4�7

������
+/
-

µ8 =

p
�7

�max
.

Therefore�����
⇣
M�1NV �̄

⌘ j � � ⇣
M�1NV �

⌘ j ����  � (�9 + µ9
p
C )

where simply �9 = �6 + �8 and µ9 = µ6 + µ8. We then have
���p̄j � pj ���  � (�10 + µ10

p
C )

for

�10 = 2�9 + d2kM�1k1kNV k1�2 + �1 + 1
µ10 = 2µ9 + d2kM�1k1kNV k1µ2 + �1.

The proof of (�DRIFT) now follows identically the arguments for
pairwise Gauss-Seidel, with �10 and µ10 taking the place of �8
and �8. As in the pairwise GS case, construction of a C certifying
(�DRIFT) requires that � be su�ciently small.
We nowprove that GR satis�es the remaining properties, (�NORM) and

(�MOD).

L���� A.4. LetC be as in the proof of (�DRIFT), and suppose that

� � a +
p
a2 + b

2
,

where

a =
�2

2
�1 (kq̇0kM +

p
2C )

b = 4m��max
�20 + �20

p
Cp

d kq̇0kM
,

and

� � 2��max
p
d

2�20 + 2�20
p
C

kq̇0kM (kq̇0M �
p
2C )
.

Then Generalized Re�ections satis�es (�NORM). Notice that both
right-hand sides vanish as � decreases.

P����. Since at least one constraint must be violated, by (�VIO),

kNT
VM�1NV �̄k2 � 2� kq̇i kM � �2�1kq̇i kM

and

� � 2� � �2�1
m

(kq̇0kM +
p
2C ),
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where we have used (�DRIFT) and again the fact that the largest
eigenvalue of NT

VM�1NV is at mostm.
From the bound (7) on the components of c, we have that

kckM  ��max
p
d
2�20 + 2�20

p
C

kq̇0kM
and this is less than � k�k1 when

��max
p
d
2�20 + 2�20

p
C

kq̇0kM
 �d

2� � �2�1
m

(kq̇0kM +
p
2C ).

Rearranging gives

�2 � � �
2

2
�1 (kq̇0kM +

p
2C ) �m��max

�20 + �20
p
Cp

d kq̇0kM
� 0

and the �rst inequality above. Lastly since kq̇i kM � kq̇0kM �
p
2C ,

we have that kckM  �
2 kq̇i k whenever

� � 2��max
p
d

2�20 + 2�20
p
C

kq̇0kM (kq̇0M �
p
2C )
,

as in the case of pairwise Gauss-Seidel. ⇤

At last we end with

L����A.5. If � < 4, then Generalized Re�ections satis�es (�MOD).

P����. At every iteration where a constraint is violated,

kq̇i+1 � q̇i kM = kM�1NV � + ckM
� kM�1N��kM � kckM

�
q
2k�k1� kq̇i kM � kckM

�
q
2k�k1� kq̇i kM � �

q
k�k1kq̇i kM /2

�
q
2k�k1� kq̇i kM � �

q
k�k1kq̇i kM /2.

The right-hand side is positive when � < 4. ⇤
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