
Handling Scene Constraints for Pose-Based Caching

Gene S. Lee
Walt Disney Animation

Christian Eisenacher
Walt Disney Animation

Andy Lin
Walt Disney Animation

Noel Villegas
Walt Disney Animation

Fig 1:Moana constrained to boat, oar, and rope Fig 2: Constraints position Maui’s and Moana’s hand Fig 3: Sample invalidation graph

ABSTRACT

This paper presents a conservative, uniform method for handling

scene constraints, such as look at and parent, in a pose-based caching

system. The constraints are organized into a dependency graph

where nodes represent the control caches of a rig, and directed

arcs link the rigs to speci�c control caches. For any animation up-

date, the dependency graph indicates which cache to clear and

which other rigs to subsequently update. This method supports

pre-evaluation, avoids expensive state tracking, and is easy to im-

plement. The result is a seamless experience that works with all

types of constraints while preserving real-time performance.

CCS CONCEPTS

• Computer systems organization→ Real-time system spec;

KEYWORDS

Constraints, Invalidation Graph (InvGraph), Pose-Based Caching

ACM Reference format:

Gene S. Lee, Christian Eisenacher, Andy Lin, and Noel Villegas. 2017. Han-

dling SceneConstraints for Pose-Based Caching. In Proceedings of SIGGRAPH

’17 Talks, Los Angeles, CA, USA, Jul 30 - Aug 03, 2017, 2 pages.

https://doi.org/10.1145/3084363.3085047

1 INTRODUCTION

In a pose-based caching system (PBCS), such as [Lin et al. 2015],

real-time playback is achieved by caching both geometry and pose

data. An initial drawing pass stores the geometry according to its

pose and subsequent drawing passes use the same pose to e�-

ciently retrieve and display the cached geometry. The pose itself is

also cached to avoid repetitive, and generally costly, evaluation of

rig controls. The pose data store every rig control into a RC-cache,

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for third-party components of thisworkmust be honored.
For all other uses, contact the owner/author(s).

SIGGRAPH ’17 Talks, Jul 30 - Aug 03, 2017, Los Angeles, CA, USA

© 2017 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-5008-2/17/07. . . $15.00
https://doi.org/10.1145/3084363.3085047

which is invalidated by animation updates.

1.1 Problem

The proper upkeep of RC-caches becomes complex with the in-

troduction of scene constraints, which relate the rig controls or

states of multiple rigs. These constraints may be animated and are

uniquely con�gured per scene. For example, in Figures 1 and 2, par-

ent constraints bind the characters’ body to the deck of the boat,

and their hands to either a rope or an oar. Any movement of the

boat or the two props will also move their hands.

Scene constraints introduce complexity by altering themapping

of rig controls to RC-caches. Normally bijective, the mapping now

extends across multiple rigs. One control can map to multiple RC-

caches, and similarly, an RC-cache can map to several controls.

With this added complexity, it is more di�cult to determine which

RC-cache to clear after speci�c rig controls are updated.

The problem compounds for constraints that relate the state of

one rig to another. In this case it can be di�cult to determinewhich

controls in�uence the �nal pose. For example, in Figure 2, if Maui’s

gaze is bound to Moana’s face, any number of pose controls could

a�ect the state. The corresponding RC-cache for Maui’s gaze is

in�uenced by a potentially great number of pose controls.

2 SOLUTION

Our solution is a conservative, e�ective method of handling scene

constraints for PBCS. Constraints in a scene are organized into an

invalidation graph (InvGraph) – a single dependency graph with

nodes for each rig and directed arcs for each constraint. The arcs

relate rigs, not rig controls, to RC-caches. This design links the

update of a whole rig to the clearing of speci�c RC-caches.

Figure 3 presents a sample InvGraph. Each node consists of a

set of controls, state variables, and RC-caches. The dotted arrows

inside a node identify the mapping of controls to RC-caches. The

directed arcs between nodes express constraints, each clearing a

di�erent RC-cache. Any time RIG-A is updated, based on changes

to its input rig controls, both of the RC-caches of RIG-B will be

cleared, and RIG-B will be subsequently updated.

This solution has the advantage that it works for all types of

constraints (e.g. parent or orientation), and inputs (e.g. pose control

https://doi.org/10.1145/3084363.3085047
https://doi.org/10.1145/3084363.3085047

SIGGRAPH ’17 Talks, Jul 30 - Aug 03, 2017, Los Angeles, CA, USA G. Lee et. al.

Fig 4: An Object Hierarchy with Three Parent Constraints Fig 5: Invalidation Graph for Fig 4 Fig 6: Complex Invalidation Graph

or state). Every constraint and input is uniformly identi�ed by the

rig that is the driving target and by the cache that is constrained.

2.1 Invalidation Graph

Figures 4, 5, and 6 provide concrete examples of the construction

and use of the InvGraph. Figure 4 visualizes the connections and

object hierarchies of three parent constraints (PC-1, PC-2, PC-3)

from Figure 2. Each parent constraint allows objects in separate

hierarchies to form a temporary parent-child relationship. PC-1

tightly parents the base of the rope to Maui’s right hand, while

PC-2 and PC-3 loosely parent the end of the rope to his left hand.

The tweak transform between the two constraints permits the left

hand to be pulled o� the rope. The red arrows show the bijective

mapping of the rig controls to their corresponding RC-caches.

Figure 5 shows the InvGraph for the object hierarchy of Figure

4. The two nodes identify the RC-caches of Maui and the rope. The

directed arc, linking the nodes to RC-caches, are set by searching

the graph for the �rst rig controls that exist upstream and down-

stream from the parent constraint. For PC-1, the upstream control

is HAND-R and the downstream control is ROPE-END-CACHE.

PC-2 and PC-3 share the same upstream and downstream node.

Hence, both constraints map to a single directed arc.

Figure 6 shows a more complex InvGraph. Four rigs are bound

by �ve varying types of constraints, one of which starts and ends

at RIG-3. Self-referencing arcs occur when a constraint links one

rig part to another, such as the clasping of hands. With more con-

straints and nodes, a single rig control update can cascade into a

series of RC-cache clears and multiple rig updates. For instance, an

update to RIG-1 induces a cache clear of RIG-2, which forces RIG-2

to update, which in turn induces RC-cache clears of RIG-4.

3 RESULTS

Our solution has several bene�ts. First, the InvGraph is easy to

implement. All arcs originate at a node, independent of the rig

control from which they originate. Cycle detection is performed

with nodes only, independent of the number of rig controls and RC-

caches involved. Second, the simplicity of our solution eliminates

the odds of clearing the wrong cache. Invalid RC-cache updates are

troubling for PBCS and are often di�cult to debug.

Third, the cache invalidation process does not involve the track-

ing of state, such as the position of a surface locator. State track-

ing is problematic in a PBCS when multiple background processes

(BGs) are working in parallel to �ll the cache. Augmenting these

parallel processes to communicate both pose and tracking data is

expensive. Forcing the primary process to evaluate the results of

every BG leads to a performance bottleneck. Our approach simply

assumes that every potentially trackable state of a node changes

when any of its rig controls update.

And �nally, prior to any rig control update, the results of updat-

ing a rig can be fully pre-computed. All downstream cache clears

are discovered e�ciently via forward propagation. For instance, in

Figure 6, the pre-computed caches cleared for RIG-1 are RC-caches

E, K, and M. For RIG-3, the caches cleared are RC-caches J and K.

3.1 Assessment

One limitation of our system is that it can be overly conservative.

It may unnecessarily clear caches that are still valid. To remedy

this situation, one could replace the InvGraph with a complete de-

pendency graph that precisely links rig controls to pertinent RC-

caches. The graph could either be integrated with the animation

dependency graph or maintained separately. Either way, the com-

plete graph must be traversed via forward propagation to �nd the

most e�cient set of RC-cache to clear and rigs to reset.

However, building a complete dependency graph requires greater

e�ort. First, the setup may not be agnostic of constraint type. Each

new type of constraint can potentially add a di�erent set of con-

nections. Second, it is necessary to set up state tracking callbacks

which are expensive when multiple cache-�lling, background pro-

cesses are involved. Third, it can be ine�cient to pre-compute the

e�ects of every rig control change. When multiple constraints are

involved, the complexity can grow combinatorially.

In practice, our conservative approach has not proven to be a

hindrance to performance. Artists normally animate with amodest

number of scene constraints, so the extra cache clears are rarely

excessive. We chose the bene�ts of simplicity and uniformity over

a truly optimal approach which would entail more overhead and

introduce greater complexity to the system.

3.2 Application

The InvGraph was developed for our PBCS during the making of

“Moana” and successfully tested onmany shots from the �lm. It has

been deployed in our production pipeline and is in active use.With

this new functionality, scene constraints are created dynamically

and applied seamlessly in our pose-based caching system while

maintaining real-time performance.

REFERENCES
Andy Lin, Gene S. Lee, Joe Longson, Jay Steele, Evan Goldberg, and Rastko Stefanovic.

2015. Achieving Real-time Playback with Production Rigs. In ACM SIGGRAPH
2015 Talks (SIGGRAPH ’15). ACM, New York, NY, USA, Article 11, 1 pages. DOI:

http://dx.doi.org/10.1145/2775280.2792519

http://dx.doi.org/10.1145/2775280.2792519

	Abstract
	1 Introduction
	1.1 Problem

	2 Solution
	2.1 Invalidation Graph

	3 Results
	3.1 Assessment
	3.2 Application

	References

