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SUBDIVISION-BASED NONLINEAR MULTISCALE CLOTH
SIMULATION∗

ALENA KOPANIČÁKOVÁ†‡ , ROLF KRAUSE† , AND RASMUS TAMSTORF‡

Abstract. Cloth simulation is an important topic for many applications in computer graphics,
animation, and augmented virtual reality. The mechanical behavior of cloth objects can be mod-
eled by the Kirchhoff–Love thin shell equations, which lead to large-scale, nonlinear, ill-conditioned
algebraic equations. We propose to solve these nonlinear problems efficiently using the recursive
multilevel trust region (RMTR) method. Our multilevel framework for cloth simulations is based
on Catmull–Clark subdivision surfaces, which facilitates generation of the mesh hierarchy and also
provides the basis for the finite element discretization. The prolongation and restriction operators are
similarly constructed based on the subdivision rules. Finally, we leverage a reverse subdivision oper-
ator to transfer iterates from fine levels to coarser levels. The novel use of this fine-to-coarse operator
provides a computationally efficient alternative to the least-square approach used elsewhere. Using
the resulting RMTR variant, we present numerical examples showing a reduction in the number of
iterations by several orders of magnitude when compared to a single-level trust region method.
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1. Introduction. Cloth simulation is a well-established topic in computer
graphics. It is essential for creating compelling animated characters, and it is also
increasingly important for virtual try-on applications in e-commerce. Convincing vis-
ual results often require high levels of detail to capture wrinkles and folding patterns,
but these results can be computationally expensive to obtain, and faster simulations
are often achieved at the expense of realism by using simplified physical models. The
goal of this paper is to accelerate cloth simulations without degrading the accuracy
of the simulation. In particular, we focus on cloth modeled as orthotropic Kirchhoff–
Love thin shells. However, the results obtained also apply to other applications that
depend on thin shell simulation with large strains and displacements.

The partial differential equations for the Kirchhoff–Love model are strongly non-
linear. A standard approach for dealing with the nonlinearities is Newton’s method
which is quadratically convergent close to the solution, but its convergence is er-
ratic when a poor initial guess is supplied and no globalization strategy is employed.
Numerical evidence indicates that Newton’s method alone may not converge, un-
less extremely small continuation steps are taken [1]. Furthermore, each Newton step
requires solving a large linear system. Given the fourth-order nature of the Kirchhoff–
Love equations, the condition number of this linear system scales as O(h−4), where
h represents the mesh size. Consequently, solving large systems arising from fine
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discretizations, which allow for high levels of detail, can be prohibitive.
Globalization strategies, such as line-search [20], trust region methods [19], or

adaptive cubic regularization strategies [12], provide a remedy for Newton’s method.
However, they do not address the ill-conditioning of the arising linear systems. In this
work, we employ a trust region method inside of a multilevel framework to address
both of the above problems. More specifically, we use the recursive multilevel trust
region (RMTR) strategy [24, 28]. This method internally employs models on multiple
levels and provides global convergence guarantees based on multiscale optimization.
We note here that for multiscale methods, the use of a globalization strategy is par-
ticularly important since the solution obtained on a coarse level may not be within
the basin of attraction for Newton’s method on the next finer level.

To generate multiple levels of detail, we leverage the Catmull–Clark subdivision
scheme and the corresponding subdivision finite elements. In feature films, cloth ob-
jects are typically modeled and rendered as subdivision surfaces, but often simulated
using triangle meshes and (approximations of) linear finite elements. However, us-
ing different discretizations at different stages requires multiple stages of remeshing,
which leads to a time-consuming set-up process and reduces the overall accuracy of
the solutions. By using an “isogeometric analysis” approach based on subdivision
surfaces, we avoid this problem as advocated in [32]. The subdivision scheme also
provides a natural way to generate the multilevel hierarchy required for the RMTR
method. In the end, we therefore incorporate the subdivision scheme in four ways:
to describe the geometry, to describe the displacements/solution, to connect different
levels of the multilevel hierarchy, and to produce the final rendered surface.

Our primary contribution is to show that the recursive multilevel trust region
(RMTR) method can be used effectively in the context of cloth simulations. The
existing literature offers several linear geometric and algebraic multilevel methods, but
to our knowledge, the RMTR method has not previously been used with isogeometric
analysis for thin shells or cloth. We do not consider collision handling in this paper,
although it is important for cloth simulation, but it can be incorporated into the
proposed method and we hope to address it in future work.

The paper is organized as follows: Section 2 provides an overview of related
work. The model we use for cloth simulation is introduced in section 3, while section
4 describes the RMTR algorithm, and section 5 introduces subdivision surfaces. In
particular, we describe how to construct a subdivision-based multilevel hierarchy, how
to employ the subdivision-based multilevel discretization, and how to assemble the
subdivision-based transfer operators. We comment on the implementation aspects of
the described multilevel method in section 6. Section 7 reports on the performance
of the RMTR algorithm based on a convergence study for four examples. We also
provide a comparison of the RMTR method with a single-level trust region method.
Some conclusions and perspectives are finally discussed in section 8.

2. Related work. Much cloth simulation in graphics is based on the seminal
paper by Baraff and Witkin [4] and later work by Bridson and colleagues [7, 8].
Subdivision finite elements were first introduced by Cirak, Ortiz, and Schröder [15]
around the same time for linear elasticity and extended to nonlinear elasticity in [14],
and later this was used for cloth simulation in [60]. More recently, Clyde, Teran,
and Tamstorf [17] used a subdivision finite element discretization of cloth to estimate
material parameters based on a secant method (BFGS).

Independently, linear multigrid methods have been developed for more than 50
years and are used extensively in many areas ranging from simple Poisson equations
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to quantum chromodynamics problems. An introduction to these methods can be
found in, for example, [9, 29]. Linear multilevel methods have also been applied in
different contexts related to shell/subdivision/cloth simulations. For example, Green,
Turkiyyah, and Storti [26] show speedups in solution time for subdivision shell sim-
ulations by applying a geometric multigrid method, and Tamstorf, Jones, and Mc-
Cormick [57] apply smoothed aggregation algebraic multigrid to achieve speedups for
cloth simulations without leveraging subdivision methods.

Nonlinear generalizations of linear multigrid methods such as the full approxima-
tion scheme [6] and nonlinear multigrid [29, 30, 41] compute coarse-level corrections
based on nonlinear representation of the original objective function. The idea of em-
ploying optimization strategies inside of a multilevel framework can be traced back to
Nash [45], where the author introduces a line-search–based method called MG/OPT.
In the context of shell problems, a full approximation scheme is applied by Gee and
Tuminaro in [22], and Bandara and Cirak [3] employ a subdivision-based multilevel
framework for a gradient-based shape optimization. Although all of these nonlinear
multilevel algorithms yield remarkable performance, the algorithms do not provide
global convergence properties [40].

The work by Gratton, Sartenaer, and Toint [24] suggests using a trust region
strategy inside of a multilevel framework, which results in a globally convergent mul-
tiscale method for nonconvex minimization problems. Gross and Krause [28] prove
that this method is second-order convergent. They also suggest replacing the com-
monly used restriction operator for transferring iterates from a fine to a coarse level
by a projection operator in order to accelerate convergence.

Alternatives, in a more parallel spirit, consider nonlinear domain-decomposition
methods, e.g., the additively preconditioned inexact Newton (ASPIN) method [10],
nonlinear elimination strategies [11], or nonlinear finite element tearing and intercon-
nect (FETI) method [39]. Combinations of multilevel and domain-decomposition
strategies provide another interesting possibility and were successfully applied in
[33, 27, 42].

As a different approach to accelerating cloth simulations, numerous papers have
considered various parallelization strategies using both CPUs [36, 59] and GPUs [58].
We include some basic parallelization in our implementation, but more work can
certainly be done to optimize our results.

3. Thin shell cloth simulation. Cloth animation amounts to numerically sim-
ulating the motion of a piece of cloth in a three-dimensional (3D) environment. A
cloth object is often subjected to external forces such as gravity or wind, and addi-
tionally a set of prescribed boundary conditions that have to be satisfied at each time
step. Figure 1 illustrates a simple example, where a piece of cloth is subjected to the
gravitational force and time-dependent boundary conditions.

In this work, we model cloth objects by employing shell kinematics, as the cloth
thickness is significantly smaller than its other geometric dimensions. The piece of
cloth is modeled in terms of a two-dimensional (2D) midsurface with constant thick-
ness τ ∈ R. The deformed midsurface is represented by a map x : ω → Ω from a 2D
parameter space ω to worldspace Ω ⊂ R3. A volumetric cloth object is described by
a map r : ωτ → Ωτ , where ωτ is the 3D parameter space and Ωτ ⊂ R3 is the region
occupied by the shell. Both maps x and r are time-dependent, i.e., x = x(t) and
r = r(t), where t denotes time.

The kinematics of thin shells can be expressed by using Kirchhoff–Love theory [38],
which assumes that straight lines initially normal to the midsurface remain straight
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Fig. 1. Cloth animation of 1m × 1m piece of fabric. The opposite top corners are moved closer
to each other, until their distance reaches 0.6m.

and normal during deformation. Equivalently, this means that the transverse shear
strain must be zero. This assumption directly implies that

r (ξ1, ξ2, ξ3) = x (ξ1, ξ2) + ξ3a3(ξ1, ξ2), −τ2 ≤ ξ
3 ≤ τ

2 ,(3.1)

where ξ = (ξ1, ξ2, ξ3) represent curvilinear coordinates and a3(ξ1, ξ2) is the unit
normal to the deformed midsurface.

The equilibrium configuration of the cloth can be found by minimizing the total
mechanical energy

ψMech(x) := 1
2

∫
ωτ
ρ̂ ‖ẋ+ ξ3ȧ3‖2J̄ dξ︸ ︷︷ ︸

:=ψKin

+
∫
ωτ
ρ̂ gTr + ψE J̄ dξ︸ ︷︷ ︸

:=ψPot

,(3.2)

which is defined as the sum of kinetic energy ψKin and potential energy ψPot. Here,
we use overbar notation for quantities related to the undeformed configuration and
overdot notation to indicate time derivatives. The symbol J̄ denotes the Jacobian
determinant |∂r̄∂ξ |, and ρ̂ = ρ̄ ◦ r̄ is the density pullback. The total potential energy,
ψPot, consists of two terms. The first term represents a gravitational force defined
by the gravity field g ∈ R3. The second term, ψE , denotes the hyperelastic energy
density which describes an orthotropic elastic material model and is defined as follows:

ψE(E ,O,k) := k1

2 ϕ1(Ẽ2
11) + k2ϕ2(Ẽ11Ẽ22) + k3

2 ϕ3(Ẽ2
22) + k4ϕ4(Ẽ2

12),(3.3)

where the vector k = [k1, k2, k3, k4] contains the material parameters. The Ẽjj rep-
resents an element of the reduced Green–Lagrange strain tensor Ẽ = OTEO, where
O = [o1,o2,o3] provides an orthotropic basis corresponding to the normalized mate-
rial warp, weft, and normal directions. The functions ϕi describe nonlinear material
response and are defined as

ϕi(u) =
dj∑
i=1

µji
αji

((u+ 1)αji − 1),(3.4)

where dj , αji, and µji are also material parameters. A detailed description of the
described model (3.3) can be found in [17, 18]. In particular, it can be shown that
we must have x ∈ H2(ω → R3) in order to satisfy the zero transverse shear strain
constraint [37].
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3.1. Minimization problem. The unknown deformation is defined as a mini-
mizer of the following minimization problem:

(3.5)
x = argmin

x ∈ H2(ω→R3)
ψMech(x)

subject to x(ξ1, ξ2) = b(ξ1, ξ2) on ∂ω.

The equality constraint in (3.5) enforces the boundary conditions b(ξ1, ξ2) for all
parameter space points (ξ1, ξ2) along the boundary segment ∂ω.

In this work, we impose the boundary conditions (3.5) by using a penalty method
[2]. In particular, we expand the objective function from (3.5) by adding a penalty
term as

ψ̃Mech(x) := ψMech(x) + β

2 ‖x− b‖
2
L2(∂ωτ ),(3.6)

where β > 0 is the penalty parameter, and ‖ · ‖L2(∂ωτ ) denotes the L2 norm on the
boundary. We employ β = h−σ, where h represents the mesh size and σ > 0 is a
constant; see [2, 5].

The solution x of the constrained minimization problem (3.5) is then approxi-
mated by the minimizer x̃ of the following unconstrained minimization problem:

x ≈ x̃ = argmin
x̃ ∈ H2(ω→R3)

ψ̃Mech(x̃).(3.7)

The solution x̃ of (3.7) approximates x well for sufficiently large values of β, and
x̃ → x as β → ∞. While the boundary conditions are not strictly satisfied, their
violation does not affect the space of admissible solutions since the additional term
in (3.7) is clearly finite when x ∈ H2 ⊂ L2. However, the violation of the boundary
conditions does influence convergence rates of the finite element method under refine-
ment. Inspired by [15] and [25], we satisfy the H2 requirement by using subdivision
basis functions for the finite element discretization; cf. section 5.2.

As an alternative to the penalty method, the boundary conditions could be im-
posed using the method of Lagrange multipliers [25, 17] or by using Nitsche’s method
[35]. The use of the Lagrange multipliers leads to constrained minimization problems
with a saddle point structure, which complicates the solution process, and the proper
derivation of Nitsche’s method for shells is beyond the scope of this paper. Hence,
our decision to use the penalty method.

3.1.1. First-order optimality conditions. The minimization of (3.7) is an
optimization problem with the following optimality conditions:

Find x ∈ H2(ω → R3) satisfying the first-order optimality condition

∇xψ̃Mech(x;v) = 0 ∀v ∈ H2(ω → R3).(3.8)

The directional derivative of the energy with respect to x is defined as

∇xψ̃Mech(x;v) =
∫
ωτ
ρ̂ ẍTvJ̄dξ −

∫
ωτ

(
∂ψE

∂x,1
v,1 + ∂ψE

∂x,2
v,2 + ∂ψE

∂x,11
v,11

+ ∂ψE

∂x,12
v,12 + ∂ψE

∂x,22
v,22 + ρ̂gTv

)
J̄dξ +

∫
∂ωτ

β
(
x− b

)T
vJ̄dξ,

(3.9)

where we use comma notation to denote partial derivatives, e.g., x,α = ∂x
∂ξα . The

symbol ẍ in (3.9) denotes the second derivative of x with respect to time t. For
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simplicity, we discard the term ξ3ȧ3 from (3.2) in (3.9), as suggested in [15, 37, 17].
A detailed derivation of the weak form (3.9) can be found in [18] and [16].

In order to solve the minimization problem (3.7) numerically, we discretize the
Euler–Lagrange equations (3.9) in space by the finite element method (FEM) and
in time by the implicit Euler method. Solving the minimization problem (3.7) is
challenging, because the functional (3.2) is nonconvex and may therefore admit many
local minimizers. In addition, as mentioned in the introduction, the condition number
of the resulting linear systems is of order O(h−4), where h represents the mesh size;
see [56, Theorem 5.1]. This condition number can in theory increase additionally
due to the penalty term introduced in (3.6). We discuss the effect of the penalization
term on the condition number based on a numerical example in section 7.1. This work
addresses both nonconvexity and ill-conditioning by employing the RMTR algorithm
[24, 28]; see section 4.

4. Recursive multilevel trust region. Our goal is to minimize the energy
functional in (3.5) by using the RMTR method [24, 23, 28]. This particular method
provides several benefits. On one hand, trust region–based globalization ensures con-
vergence to first-order critical points. On the other hand, the multilevel framework
addresses problems with ill-conditioning and many degrees of freedom. Our imple-
mentation of the RMTR method follows [28]. Extended details about the method and
its convergence properties can also be found in [24, 23]. The monograph [19] offers a
comprehensive introduction of trust region methods.

4.1. Trust region method. The trust region (TR) method minimizes an ob-
jective function f : Rn → R by producing a sequence {xi} of iterates converging to a
first-order critical point, i.e., g(x) := ∇f(x) = 0. In this work, the objective function
f denotes the energy functional (3.6), and the first-order critical points satisfy the
optimality conditions (3.8).

At each iterate i, the trust region method approximates f by a quadratic model
mi around the current iterate xi ∈ Rn. The model mi is assumed to be adequate only
in a “trust region,” specified around current iterate xi with radius ∆i > 0, defined
by the `2 norm. A correction si is then computed as an approximate solution to the
following constrained quadratic minimization problem:

(4.1)
minimize
si∈Rn

mi(si) = fi + gTi si + 1
2s
T
i Hisi

subject to ‖si‖ ≤ ∆i,

where Hi := ∇2f(xi). Trust region convergence theory does not require exact solution
of (4.1). However, the approximate solution si of (4.1) has to fulfill the following
sufficient decrease condition [19]:

mi(xi)−mi(xi + si) ≥ κr‖gi‖min
[
‖gi‖

1 + ‖Hi‖
,∆i

]
,(SDC)

where κr ∈ (0, 1).
In contrast to line-search algorithms, the iterate obtained in this way (also called

the trial point), xi + si, is not used immediately. The trial point is accepted only if
the ratio of actual and predicted reduction

ρi = f(xi)− f(xi + si)
mi(0)−mi(si)

= actual reduction
predicted reduction(4.2)
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is larger than some constant η1 ∈ (0, 1). If the trial point is accepted, then the trust
region radius is increased. Otherwise it is decreased or left unchanged. Algorithm 4.1
summarizes this process.

Algorithm 4.1. Local TR.
Require: f : Rn → R, x0 ∈ Rn, ∆0, εg ∈ R, imax ∈ N
Constants: η1 ∈ R, where 0 < η1 < 1

1: for i = 0, . . . , imax do
2: min

‖si‖≤∆i

mi(si) = fi + gTi si + 1
2s
T
i Hisi . Solve constrained QP problem

3: ρi = f(xi)−f(xi+si)
mi(0)−mi(si) . Trust region ratio computation

4: if ρi > η1 then
5: xi+1 := xi + si . Trial point acceptance
6: else
7: xi+1 := xi . Trial point rejection
8: end if
9: ∆i+1 = Radius update(ρi,∆i)

10: end for
11: return xi+1, ∆i+1

4.2. Multilevel framework. Multilevel methods provide solvers of optimal
complexity by using a hierarchy {X l}Ll=0 of usually nested finite element spaces. Here,
we use the subscript l to denote the level and assume L ≥ 1 to be the finest level.
The transfer of data between subsequent levels is done by means of three transfer op-
erators. The prolongation operator Il+1

l : X l → X l+1 is designed to transfer primal
variables, such as corrections from a coarse level to a finer level. The restriction oper-
ator Rl

l+1 : X l+1 → X l transfers dual variables, e.g., gradients, from a fine level to a
coarser level. The operators Rl

l+1 and Il+1
l are related by the relation Rl

l+1 = (Il+1
l )T .

The projection operator Pl
l+1 : X l+1 → X l transfers primal variables from a finer level

to a coarser level.
The computational cost of minimizing the original objective function can be re-

duced by employing simplified model problems. As is common for nonlinear mul-
tilevel schemes, e.g., FAS [6], NMG [29], NMM [41], and MG/OPT [45], we create
level-dependent models hl : Rnl → R, defined as

hlc(xlc) := f lc(xlc) + 〈δglc,xlc − xlc,0〉,(4.3)

with

δglc :=
{

Rl
l+1∇hl+1

c (xl+1
c,µ1

)−∇f lc(xlc,0) if l < L,

0 if l = L,
(4.4)

where we use a triplet (cycle, level, iterate) to denote all computational quantities.
For example the solution computed as the ith iterate during the cth cycle on level l
is denoted by xlc,i. The symbols µ1 and nl denote the number of pre-smoothing steps
and number of unknowns on a given level, respectively.

On the finest level, we assume that the level-dependent objective function hLc
coincides with the original objective function, i.e., hLc := fLc . On the coarser levels,
the level-dependent functions {hlc}L−1

l=0 consist of two terms. The first term, f lc, rep-
resents the original minimization problem discretized on level l. The second term,
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〈δglc,xl − xlc,0〉, contains the coupling term δglc that describes the difference between
the restricted fine-level gradient and the initial coarse-level gradient. The presence of
this term enforces the following relation:

gl−1
c,0 = ∇hl−1

c,0 (xl−1
c,0 ) = Rl−1

l glc,µ1
.(4.5)

In other words, the initial coarse-level gradient is nothing but the restricted fine-level
gradient. We refer to relation (4.5) as first-order consistency, since the first step of
the coarse-level minimization process will be done in the direction of the negative
restricted fine-level gradient.

4.3. RMTR algorithm. Having defined the coarse level minimization prob-
lems, we can proceed to the description of the RMTR method shown in Algorithm 4.2.
We use a V-cycle for the RMTR method, and our description follows [28] closely. In
addition, all theoretical properties of Algorithm 4.2 shown in [28] hold, when applied
to the minimization problem (3.7).

As depicted in Figure 5, each V-cycle consists of nonlinear smoothing steps and a
coarse-level solve. While smoothing reduces the high-frequency error associated with
each level, the coarse-level solve eliminates the low-frequency error remaining on the
coarsest level. Starting from the finest level, l = L, the RMTR algorithm performs
µ1 ∈ N pre-smoothing steps. This is done by a trust region solver; cf. Algorithm 4.1.

Algorithm 4.2. RMTR.

Require: l ∈ N,xlc,0, gl+1
c,µ1
∈ Rnl ,∆l

c,0, ε
l
g ∈ R

Constants: µ1, µ2 ∈ N, η1, ε
∆ ∈ R, where 0 < η1 < 1

1: Compute δglc and generate hlc by means of (4.3). . Initialization of given level
2: [xlc,µ1

, ∆l
c,µ1

] = Local TR(hlc, xlc,0, ∆l
c,0, ε

l
g, µ1) . Pre-smoothing

3: if l > 0 then
4: [xl−1

c,µl−1 ]=RMTR(l − 1,Pl−1
l xlc,µ1

,Rl−1
l glc,µ1

,∆l
c,µ1

, εl−1
g )

5: slc,µ1+1 = Ill−1(xl−1
c,µl−1 − xl−1

c,0 ) . Prolongation of coarse-level correction
6: Compute ρlc,µ1+1 by means of (4.11). . Computation of multilevel TR ratio
7: if ρlc,µ1+1 > η1 then
8: xlc,µ1+1 := xlc,µ1

+ slc,µ1+1 . Acceptance of coarse-level correction
9: else

10: xlc,µ1+1 := xlc,µ1
. Rejection of coarse-level correction

11: end if
12: [∆l

c,µ1+1] = Radius update(l, ρlc,µ1+1, ∆l
c,µ1

, ∆l+1)
13: if ‖glc,µ1+1‖ ≤ εlg then
14: return xlc,µ1+1 . Termination
15: end if
16: end if
17: [xlc,µl , ∆l

c,µl ] = Local TR(xlc,µ1+1, ∆l
c,µ1+1, ε

l
g, µ2) . Post-smoothing

18: if l = L then
19: Set ∆l

c+1,0 = ∆l
c,µl , x

l
c+1,0 = xlc,µl , c = c+ 1 . Initialization of next V-cycle

20: Go to: 1 . Go to next V-cycle
21: else
22: return xlc,µl . Continue recursion and go to next finer level
23: end if

The result of pre-smoothing is an intermediate iterate xlc,µ1
. The projection of
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this iterate to the next coarser level yields the initial guess on level l − 1, i.e.,

xl−1
c,0 = Pl−1

l xlc,µ1
.(4.6)

Once we have reached the coarser level, we can perform the minimization of the level-
dependent objective function hl−1

c . The result of this minimization is a coarse-level
correction, sl−1

c , which is prolongated back to the fine level. For this reason, we have
to make sure that the prolongated coarse-level correction does not exceed the current
fine-level trust region radius:

‖Ill−1s
l−1
c ‖ ≤ ∆l

c,µ1
.(4.7)

This can be achieved by defining the trust region subproblems on the lower levels with
respect to the current fine-level trust region radius ∆l

c,µ1
as follows:

(4.8)
minimize
sl−1
c ∈Rnl−1

hl−1
c (xl−1

c,0 + sl−1
c )

subject to ‖sl−1
c ‖l−1 ≤ ∆l

c,µ1
,

where ‖ · ‖l is the level-dependent norm defined by

‖xlc,i‖l :=
{
‖ILL−1 · · · Il+1

l xlc,i‖2 if l < L,

‖xlc,i‖2 if l = L.
(4.9)

The constraint in (4.8) guarantees that the prolongated correction stays inside the
fine-level trust region radius.

4.3.1. Update of the trust region radius. We can incorporate the constraint
from (4.8) explicitly into the trust region radius update rules. As demonstrated by
Algorithm 4.3, the new TR radius, ∆l

c,i, on a given level l and iterate i, is obtained in
two steps. First, we compute the intermediate radius ∆l

+, which follows standard TR
update rules. In the second step, we determine a threshold δlc,i on the forthcoming
coarse-level correction sl−1

c,i+1. The actual value of the δlc,i depends on the condition
‖xlc,i − xlc,0‖l > (1 − ε∆)∆l+1

c,µ1
; see line 4 of Algorithm 4.3. If the condition is not

satisfied, δlc,i is set to zero, since it is impossible to obtain any further coarse-level
correction without violating the fine-level trust region radius; see [24, Lemma 4.1]. If
the condition holds, δlc,i is computed such that the lower-level iterates remain in the
fine-level trust region radius, i.e., such that (4.8) holds. Finally, the new TR radius,
∆l
c,i+1, is defined as min(∆l

+, δ
l
c,i). Figure 2 illustrates the process. Note that we

assume ∆l+1 =∞ for l = L.

4.3.2. Acceptance of the coarse-level correction. After the approximate
minimization on level l − 1 has been performed, we prolongate the coarse-level cor-
rection to the finer level, i.e.,

slc,µ1+1 = Ill−1(xl−1
c,µl−1 − xl−1

c,0 ).(4.10)

The symbol µl−1 in (4.10) denotes the number of all computed corrections on level l−1
during cycle c. The coarse-level correction is accepted only if it provides a decrease
in the fine-level objective function, i.e., only if hlc,µ1+1 < hlc,µ1

. The quality of slc,µ1+1
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is determined by means of the multilevel trust region ratio ρlc,µ1
, which measures the

agreement between the fine-level and the coarse-level reductions:

ρlc,µ1+1 =
hlc(xlc,µ1

)− hlc(xlc,µ1
+ slc,µ1

)
hl−1
c (Pl−1

l xlc,µ1
)− hl−1

c (xl−1
c,µl−1)

= fine-level reduction
coarse-level reduction .(4.11)

The correction slc,µ1+1 is accepted only if ρlc,µ1+1 > η1. This is in contrast to the
other nonlinear multilevel schemes, such as the full approximation scheme [6], where
the coarse-level correction slc,µ1+1 is accepted without verifying its quality.

Algorithm 4.3. Radius update.
Require: l ∈ N, ρi, ∆l

c,i, ∆l+1
c,µ1
∈ R

Constants: ε∆, η1, η2, γ1, γ2 ∈ R, where
0 < η1 ≤ η2 < 1, ε∆ ∈ (0, 1),
0 < γ1 < 1 < γ2

1:

2: ∆l
+ =


γ1∆l

c,i ρi < η1

∆l,i ρi ∈ [η1, η2]
γ2∆l

c,i ρi > η2

3: δlc,i = 0
4: if ‖xlc,i−xlc,0‖l > (1−ε∆)∆l+1

c,µ1
then

5: δlc,i = ∆l+1
c,µ1
− ‖xlc,i − xlc,0‖l

6: end if
7: return ∆l

c,i+1 = min(∆l
+, δ

l
c,i)

xlc,0∆l+1

δlc,i

x
l
c,i

∆l
+

Fig. 2. Preservation of the fine-
level trust region radius.

Once the correction slc,µ1+1 has been accepted or rejected, the V-cycle continues
with µ2 ∈ N post-smoothing steps. The outlined process is performed recursively on
each level, except on the coarsest one, where no recursion is called. On the finest
level, the last iterate of cycle c is taken over as the initial iterate of the next cycle
c+ 1.

5. Subdivision surfaces. As noted before, the Kirchhoff–Love formulation re-
quires test and trial functions to be H2 continuous [37]. Such smoothness can be
guaranteed, for example, by employing NURBS [32] or subdivision basis functions
[15]. Subdivision schemes generally provide the advantage that they are defined on
control meshes with arbitrary topology. For cloth simulations in the animation indus-
try, a subdivision-based discretization provides an additional advantage, since cloth
objects are often also modeled and rendered as subdivision surfaces.

Many subdivision schemes exist, but the most widely used are the Catmull–
Clark [13] and the Loop [44] schemes. This work employs the Catmull–Clark subdi-
vision scheme as implemented by Pixar’s open-source package OpenSubdiv [47]. The
Catmull–Clark scheme was developed for quadrilateral meshes as a generalization of
bi-cubic B-spline surfaces [13]. The resulting surfaces are C2 continuous everywhere
except at extraordinary vertices where they are only C1 continuous.

In the following, the subdivision surfaces are used to represent both the geometry
and the finite element space X l on every level l = 0, . . . , L in the multilevel hierarchy.
Additionally, we employ subdivision-based transfer operators for transferring the data
between adjacent levels.
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Fig. 3. Left: Refinement of one-dimensional (1D) cubic B-spline (N(ξ)). Right: A subdivision
applied to the 1D coarse-level control polygon (green) results in refined control polygon (blue). (Color
available online only.)

5.1. Subdivision-based multilevel hierarchy. The subdivision schemes are
developed from the refinability property of the B-spline basis functions [63]. Con-
sider the initial control mesh T 0. We denote coarse-level control points by q0

I =
(q0
I1, q

0
I2, q

0
I3)T ∈ R3, where I = 1, . . . , n0 and n0 is the number of control points on

the coarsest level. Here, we slightly abuse a notation and use the symbol nl to denote
the number of control points on a given level l. For the time being, we assume that
there exist B-spline basis functions {N0

I } such that the mid-surface x is represented
as

x(q, ξ1, ξ2) =
n0∑
I=1

q0
IN

0
I (ξ1, ξ2).(5.1)

The refinability property states that every B-spline basis function N0
I can be

expressed as a translated and dilated copy of itself, i.e.,

N0
I (ξ1, ξ2) = (s1

I)TN0
I(2ξ1, 2ξ2),(5.2)

where the vector s1
I ∈ Rns defines weights for the linear combination of refined basis

functions N0
I(2ξ1, 2ξ2). The size ns of N0

I(2ξ1, 2ξ2) depends on the order of N0
I .

Figure 3 demonstrates the refinability property of a 1D cubic B-spline, which can be
written as a sum of five refined cubic B-splines.

The relation (5.2) allows us to change the basis in (5.1), such that

x(q, ξ1, ξ2) =
n0∑
I=1

q0
IN

0
I =

n0∑
I=1

q0
I((s1

I)TN1
I) = · · · =

n0∑
I=1

q0
I((slI)TN l

I).(5.3)

The mid-surface x in (5.3) is defined in terms of the refined basisN l
I = N0

I(2lξ1, 2lξ2),
which can be expressed by using matrix notation as

x(q, ξ1, ξ2) = N0q0 = (S1)TN1q0 = · · · = (Sl)TNlq0,(5.4)

where (Sl)T ∈ R3nl×3nl+1 is the subdivision matrix containing entries from slI . Instead
of applying subdivision weights Sl to the basis functions Nl, we can perform an
alternative operation in terms of control points

ql = Slql−1.(5.5)
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Reformulating (5.1) with the help of (5.5) results in

x(q, ξ1, ξ2) = N0q0 = N1q1 = · · · = Nlql.(5.6)

The formulation in (5.6) suggests that the same mid-surface x can be represented
by basis functions and control cages of the different refinement levels. This allows us
to create the multilevel hierarchy required by the RMTR algorithm in a very natural
way as

XL(T L) ⊃ XL−1(T L−1) ⊃ · · · ⊃ X 0(T 0),(5.7)

where the spaces associated with different subdivision levels are defined by

X l(T l) := span(N l
I : I = 1, . . . , nl).(5.8)

5.2. Subdivision FEM. On each level l of the multilevel hierarchy (5.7), the
RMTR method, Algorithm 4.2, requires the computation of the multilevel objective
function, its gradient, and its Hessian. Following an isogeometric analysis approach,
we approximate the domain geometry and the solution of (3.7) by the same basis
functions, {N l

Iej}j=1,2,3;I=1,...,nl , where ej ∈ R3 denotes standard basis vector. The
finite element formulation is then obtained by inserting

x(ql, ξ1, ξ2) =
nl∑
I=1

qlIN
l
I(ξ1, ξ2) and v =

nl∑
I=1

N l
Iej(5.9)

into (3.9). Integration in (3.9) is performed by numerical quadrature, which requires
evaluation of the basis functions {N l

I}n
l

I=1 and their first- and second-order derivatives
at any parameter location (ξ1, ξ2) ∈ ω. Since the parametrization of a subdivision
surface depends on the neighborhood of a given face F , we split the faces of the
control cage into two groups: ordinary and extraordinary. An ordinary face only
contains ordinary vertices defined as vertices with valence ϑ = 4 (i.e., four incident
edges), while an extraordinary face contains at least one extraordinary vertex, i.e., a
vertex with valence ϑ 6= 4.

For ordinary patches as shown in Figure 4a, the Catmull–Clark scheme reduces
by design to a uniform bi-cubic B-spline surface. These regions are easy to evaluate
since the B-spline basis functions are polynomials. The surface patch corresponding
to a given face F depends only on the one-ring neighborhood of the face. By one-ring
neighborhood, we mean the set of all faces incident to the given face F . In the case
of an ordinary patch, the one-ring is topologically a 4× 4 rectangular grid and there
are exactly 16 nonzero values of N l

I .
The extraordinary surface patches, such as the one shown in Figure 4b, can be

difficult and expensive to evaluate because the surface is no longer defined by a B-
spline basis. However, for any point away from an extraordinary point, the evaluation
can be performed by applying a finite number of subdivision steps, such that the
given point is no longer in an extraordinary region. Stam [54] demonstrated that the
eigenstructure of the local subdivision matrix may be exploited in order to evaluate
the subdivision basis functions and their derivatives even at extraordinary vertices.

5.2.1. Multilevel treatment of boundary conditions. The use of subdivi-
sion basis functions requires careful treatment of the prescribed boundary conditions
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(a) (b) (c)

Fig. 4. (a) Ordinary subdivision finite element (gray). A bi-cubic B-spline is defined by 16
control vertices (indicated by dots) in a one-ring neighborhood (white). (b) Extraordinary subdivision
finite element (gray) and its one-ring neighborhood (white) defined by 16 control vertices (indicated
by dots). (c) Open control mesh with one layer of ghost faces (gray).

b(ξ1, ξ2) for the problem (3.7). This is due to the fact that the discretization of
boundary conditions

b(ql, ξ1, ξ2) =
nl∑
I=1

qlIN
l
I(ξ1, ξ2)(5.10)

employs basis functions {N l
I}, which have one-ring support. As a consequence, we

have to attach a one-ring of artificial/ghost faces around the boundary; see Figure 4c.
It is important to notice that the mid-surface is not parametrized over ghost faces,
but the ghost control points affect the solution on the neighboring interior faces.

Our implementation incorporates ghost faces into the design of the multilevel
hierarchy as follows. During the modeling process, we add one layer of ghost faces to
the coarse-level control cage T 0. In the next step, we subdivide T 0 and, as a result,
obtain the control cage T 1, which now contains two layers of ghost faces. Since the
outer layer of ghost faces does not influence the geometry along the boundary, it can
be discarded. In fact, removing unused vertices/faces saves a significant amount of
memory. Figure 5 provides an example, where the initial control cage with ghost
faces is subdivided two times. The parametrized surface, shown in blue, retains its
domain on each level. The red color represents the one-ring of ghost vertices. On
levels l = 1, 2, additional layers of ghost vertices (yellow color) are removed.

5.3. Transfer operators via subdivision scheme. The exchange of data be-
tween adjacent levels of the multilevel hierarchy is ensured by transfer operators. As
already introduced in section 4.2, the RMTR algorithm employs three different types
of transfer operators: prolongation, restriction, and projection. In this work, all three
transfer operators are based on subdivision surfaces.

5.3.1. Prolongation and restriction. A solution of the discretized Euler–
Lagrange equation (3.9) is a set of optimal fine-level control points (qL)∗ ∈ R3nL .
Recalling section 5.1, the relation between the fine-level and the coarse-level control
points can be expressed by means of the subdivision matrix Sl+1

l ∈ R3nl+1×3nl as

ql+1 = Sl+1
l ql.(5.11)

As a consequence, the global subdivision matrix Sl+1
l is a natural choice for the

prolongation of the primal variables (control points).
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Fig. 5. Left: Nonlinear V-cycle. Right: Multilevel hierarchy obtained by the Catmull–Clark
subdivision scheme. Blue represents the parametrized surface. The ghost vertices associated with a
given level are marked by red. The yellow part represents the redundant part of the domain, which
is removed. (Color available online only.)
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Fig. 6. Catmull–Clark subdivision scheme for extraordinary control points. Left: Construction
of a face point (blue circle). Middle: Computation of an edge point (brown rectangle). Right:
Reposition of the coarse-level vertex (green diamond). Red diamond markers represent coarse-level
control points. (Color available online only.)

The assembly of Sl+1
l can be performed using the Catmull–Clark subdivision

scheme, which consists of two steps: refinement and smoothing. Refinement intro-
duces new control points, called face points {f l+1

I } or edge points {el+1
I }. Smoothing

repositions the coarse-level control points. The fine-level control points created in this
way are denoted as {vl+1

I }. The fine-level control cage T l+1 contains all three types
of control points, collectively denoted by ql+1 ∈ R3nl+1 .

In the following, we describe subdivision rules for the Catmull–Clark scheme in
the generic form, such that they can be applied to both ordinary and extraordinary
control points. Figure 6 illustrates the subdivision steps, (5.12)–(5.15) explained
below, for extraordinary control points. The local subdivision rules for the Catmull–
Clark scheme are the following:

1. A face point f l+1
I is created by taking an average of all control points sur-

rounding a given element/face FI , i.e.,

f l+1
I = 1

N

∑
vl
I
∈FI

vlI ,(5.12)

where N = |FI |.
2. A new edge point el+1

I is computed by averaging the endpoints (elI , vlI) of a
given edge together with the face points (f l+1

I , f l+1
I+1) of the two faces incident
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to the edge as follows:

el+1
I =

elI + vlI + f l+1
I + f l+1

I+1
4 .(5.13)

The face points f l+1
I and f l+1

I+1 are obtained by (5.12).
3. The fine-level position vl+1

I of the coarse-level control point vlI is obtained
as

vl+1
I = ϑ− 2

ϑ
vlI + 1

ϑ2

ϑ−1∑
I=0

elI + 1
ϑ2

ϑ−1∑
I=0

f l+1
I ,(5.14)

where ϑ is the valence of vlI . Employing (5.13), we can replace elI in (5.14)
with the newly created edge points el+1

I as

vl+1
I = ϑ− 3

ϑ
vlI + 4

ϑ2

ϑ−1∑
I=0

el+1
I − 1

ϑ2

ϑ−1∑
I=0

f l+1
I .(5.15)

The fine-level position vl+1
I of vlI is then expressed as the weighted average

of vlI and the newly created points in its one-ring neighborhood.
In addition to (5.12)–(5.15), subdivision on the boundaries requires a different set

of rules; see Appendix A.

5.3.2. Projection by reverse subdivision. The RMTR method in Algorithm
4.2 employs a projection operator in order to transfer primal variables (control points)
from a finer level to the next coarser level. This operator is used to generate the initial
guess on a coarser level, given a fine-level iterate. Gross and Krause (see [28, 27]) show
that the quality of the projection operator impacts the overall convergence behavior of
the RMTR method. An ideal projection operator, Pl

l+1 ∈ R3nl×3nl+1 , should satisfy
the following relation:

ql = Pl
l+1 (Sl+1

l ql)︸ ︷︷ ︸
ql+1

.(5.16)

In other words, the transfer of the iterate between two levels should not alter the
original iterate. The restriction operator, (Sl+1

l )T , typically does not satisfy (5.16).
An operator, Pl

l+1, that meets requirement (5.16) can be found by solving the
following least-square minimization problem:

(5.17) ql = arg min
q

‖ql+1 − Sl+1
l q‖2.

This gives

(5.18) ql = ((Sl+1
l )TSl+1

l )−1(Sl+1
l )Tql+1.

The unique operator Pl
l+1 is thus given by Pl

l+1 = ((Sl+1
l )TSl+1

l )−1(Sl+1
l )T , i.e., as

the Moore–Penrose pseudo-inverse of Sl+1
l . Unfortunately, the operator Pl

l+1 obtained
from (5.17) requires matrix inversion, which makes the algorithm computationally
expensive. Moreover, the operator Pl

l+1 may be a dense matrix, even though the
matrix Sl+1

l is sparse.
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Given the goal of designing a computationally efficient multilevel algorithm, we
do not employ Pl

l+1 but instead introduce a novel and computationally cheaper op-
erator, Ql

l+1 ∈ R3nl×3nl+1 , which is based on reverse subdivision. Following the work
presented in [43], the reverse subdivision operator Ql

l+1 is affine and satisfies (5.16).
Reverse subdivision reconstructs coarse-level control points vlI by using knowledge
about the fine-level control points in the one-ring neighborhood of vl+1

I . The coarse-
level point vlI can be expressed in a generic way as

vlI = c1v
l+1
I + c2

ϑ−1∑
I=0

el+1
I + c3

ϑ−1∑
I=0

f l+1
I ,(5.19)

where c1, c2, c3 for the moment are coefficients to be determined, and ϑ denotes the
valence of vlI . We can substitute vl+1

I and el+1
I in (5.19) by (5.14) and (5.13), respec-

tively. Equation (5.19) can then be reformulated as follows:

vlI =
(
ϑ− 2
ϑ

c1 + ϑ

4 c2

)
vlI +

(
c1
ϑ2 + c2

4

)
ϑ−1∑
I=0

elI +
(
c1
ϑ2 + c2

2 + c3

)
ϑ−1∑
I=0

f l+1
I .

The coefficients c1, c2, c3 can now be obtained by solving the simple 3 × 3 system of
equations

(5.20)

(ϑ− 2)/ϑ ϑ/4 0
1/ϑ2 1/4 0
1/ϑ2 1/2 1

c1c2
c3

 =

1
0
0

 .

The solution of (5.20) is

c1 = ϑ

(ϑ− 3) , c2 = −4
ϑ(ϑ− 3) , c3 = 1

ϑ(ϑ− 3) .(5.21)

The reverse subdivision formula is finally obtained by inserting (5.21) into (5.19).
The formula (5.19) is straightforward to implement. The assembly of the reverse
subdivision operator is based only on the information from the local neighborhood
of the fine-level control point vl+1

I . This leads to a transfer operator with sparse
structure, in contrast to the one obtained in (5.18).

The result in (5.19) cannot be applied for extraordinary vertices with valence
ϑ = 3 because the determinant of the system in (5.20) equals zero in that case. Luckily,
an alternative reverse subdivision rule can be applied; see Appendix C. Additionally,
the formula (5.19) cannot be used to reconstruct coarse-level ghost points. This is
due to the fact that during the construction of the multilevel hierarchy (see section
5.2.1), we delete one layer of the ghost faces on each level. Therefore, we do not have
complete information about the one-ring neighborhood of vl+1

I required by (5.19). We
can overcome this difficulty by introducing a new set of reverse subdivision rules; see
Appendix B.

Even though the results in this paper are obtained using the Catmull–Clark
scheme, the reverse subdivision operator also exists for the other subdivision schemes,
e.g., the Loop scheme [52].

6. Implementation. The nonlinear multilevel scheme requires discretization of
the problem (3.9) on different levels of the multilevel hierarchy. This requires several
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Fig. 7. Nonlinear multilevel transient framework.

adjustments to the traditional transient FEM framework. Our proposed design is
illustrated in Figure 7.

The simulation starts with the multilevel initialization. During this process, the
algorithm generates the hierarchy of control cages {T l}l=0,...,L by subdividing the
initial control cage T 0 and assembling the transfer operators. For the assembly of the
global subdivision matrix, we use the OpenSubdiv library [47], while the assembly of
the reverse subdivision operator is implemented separately. Note that the transfer op-
erators are only assembled once since the topology of the control cages does not change
during the simulation. The initialization phase also contains a pre-computation step,
where we compute basis functions and their derivatives at quadrature points. These
values only depend on the local topology, so we only do this for one ordinary face and
each type of extraordinary face. The resulting stencils of basis function values are
stored in a hash-table, which is later used during the solution process for assembly
of the gradient and the Hessian on every level. Our current implementation supports
extraordinary vertices with valence up to 99.

Once the initialization has been completed, the simulation continues into a time-
stepping loop, which consists of pre-processing, nonlinear solve, and post-processing.
Pre-processing and post-processing have to be executed on each level of the multilevel
hierarchy. This ensures synchronization of different levels in time. For example, at
each time step, the animator prescribes a set of boundary conditions for the finest
level. Those conditions need to be distributed to the coarser levels. Otherwise, the
coarse-level models would not be suitable representations of the fine-level problem.
The RMTR method has access to the assembly routines of the coarse-level models,
which allows the level-dependent models described in (4.3) to be created.

Our implementation of this framework leverages Intel’s Math Kernel Library li-
brary [34] heavily for linear algebra.

7. Numerical examples. In this section, we study the performance of the
RMTR method using four scenarios, each using a 1 m × 1 m square piece of cloth.
The four scenarios are subject to different sets of boundary conditions:

• Trampoline. All four sides of the boundary are held fixed.
• Drooping. Two neighboring sides of the boundary are fixed, while the remain-

ing two sides are free to fall.
• Re-entrant corner. A 0.3 m × 0.3 m square is removed from the corner of
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Table 1
Material parameters for the denim material used in all experiments. The thickness τ is given

in mm, the density ρ in kg/m2, and ki in MPa. All other parameters are dimensionless.

k1 4.79 d1 5 µ12 -1482.1 µ33 -185.7 α11 -7.80 α32 -12, 802
k2 4.52 d2 1 µ13 276.43 µ34 -45.82 α12 10.80 α33 17.91
k3 9.03 d3 5 µ14 2, 407.67 µ35 146.98 α13 18.95 α34 30.07
k4 2.44 d4 3 µ15 3, 416.79 µ42 0.79 α14 -12.89 α35 24.68
τ 0.66 ρ 0.4 µ32 0.658 µ43 11.08 α15 1.61 α41 2.95

α21 1 α42 -2, 823.9
α31 12.71 α43 4.29

Fig. 8. Test cases, from left to right: Trampoline, Drooping, Re-entrant corner, Drape.

the original piece of the cloth, and the edges adjacent to the removed area
are held fixed. This example introduces a structural singularity due to the
re-entrant corner.

• Drape. Time-dependent boundary conditions are applied by moving two op-
posite corners of the cloth together. Each corner is translated 20 cm in the
direction of the opposite corner. This example is of interest because it con-
tains a lot of wrinkles and folding patterns, which cannot be represented on
the coarsest level.

All prescribed boundary conditions are applied just on the displacement field, while
rotational degrees of freedom are unconstrained. The presented numerical examples
employ vertices with valences 2, 3, and 4. Throughout the following we use a denim
material given by the parameters in Table 1. Figure 8 depicts the simulation results.

7.1. Condition number and machine precision. As noted in section 3.1.1,
the condition number of the linear systems is of order O(h−4), where h represents
the mesh size. Figure 9 (left) demonstrates how the condition number increases with
respect to the number of degrees of freedom (dofs). As we can see, the condition
number is always larger than 108.

Figure 9 (right) illustrates the effect of the penalty parameter β on the overall
condition number. For this specific example, the overall condition number of the
Hessian H is not affected by the penalty term β for β < 105. For β > 105, the overall
condition number increases. This numerical behavior is in agreement with the theory
discussed by Posṕı̌sil in [48, Theorem 1.7.2]. In particular, let M denote the second
derivative of the penalty term from (3.7) and let Hmech denote the second derivative
of the mechanical energy (3.2). Posṕı̌sil shows that if cond(M) ≤ cond(Hmech), then
cond(H) = cond(Hmech).

The presented numerical examples use β = h−σ, where h is the mesh size and
σ = 5. This particular choice provides a reasonable tradeoff between the accuracy
with which the boundary conditions are imposed and the ill-conditioning of the arising
linear systems.
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Level # dofs ≈ cond(H)
1 147 108

2 363 109

3 1, 083 1010

4 3, 675 1011

5 13, 467 1012

6 51, 483 1013
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Fig. 9. Left: Condition number as function of the number of dofs. Right: Condition number
as function of penalty parameter β. The data are based on the trampoline example with 1,083 dofs
and a time step of dt = 1.

7.2. Convergence to critical points and stopping criterion. The RMTR
method in Algorithm 4.2 applied to the minimization problem (3.7) converges to the
first-order critical points since the energy functional ψ̃Mech is continuously differen-
tiable, is bounded from below, and has uniformly bounded Hessians [24, Theorem
4.13], [28, Theorem 4.7]. In order to identify the convergence numerically, we use the
following stopping criterion:
(7.1)
‖g(xi)‖ < 10−7 or

(
(|f(xi−1)− f(xi)| or ‖xi−1 − xi‖) < 10−12 if ∆i > 1015),

where ‖g(xi)‖ is the norm of the gradient at the iterate xi, |f(xi−1)−f(xi)| measures
the difference in the objective function between two successive iterations, and ‖xi−1−
xi‖ denotes correction size. The second part of (7.1) is activated only if the current
trust region radius ∆i is bigger than 1015. In this case, the current iterate xi is
close to the minimizer x∗ and the trust region acts as Newton’s method [28, Theorem
4.10]. Unfortunately, the convergence behavior of Newton’s method in floating point
arithmetic is restricted by the limiting accuracy and the limiting gradient [31, Chapter
25]. The limiting accuracy is proportional to the condition number of the Hessian at
the solution x∗ and the accuracy with which gradient is evaluated [61, section 2.2].
The limiting gradient provides a lower bound on the norm of gradient [61, section
2.3]. In particular, ‖g(xi)‖ is bounded below by the error made in computing the
gradient plus the term eps‖H(xi)‖‖xi‖, where eps denotes machine precision.

The cloth simulations considered in this work are severely ill conditioned; see
section 7.1. In addition, the orthotropic elastic material model (3.3) describing the
cloth behavior is defined as a sum of several polynomials. Hence, the evaluation of
the gradient (3.9) is subjected to large rounding errors. For this reason, it is of major
importance to prevent the algorithm from meandering aimlessly, which we achieve by
including the second condition in (7.1). In practice, ‖g(x)‖ ≤ 5× 10−5 is satisfied by
all presented numerical examples.

7.3. Choice of constrained QP solver. Both the TR and the RMTR methods
require the solution of a constrained quadratic (QP) subproblem (4.1) within each
iteration. A suitable QP solver must produce a correction that satisfies the sufficient
descent condition (SDC); see [19]. In the context of the cloth simulations considered
here, we have tested the Dogleg method [49, 50] and the Steihaug–Toint truncated
conjugate-gradient (ST-CG) method [55, 62]. The ST-CG method suffers more from
the severe ill-conditioning of the Hessian than the Dogleg method. As a consequence,
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Table 2
Choice of parameters used inside of TR/RMTR algorithms.

Parameter η1 η2 γ1 γ2 ∆L
0,0 µ1 µ2 ε∆

Value 0.1 0.75 0.5 2.0 1 1 1 0.001

the TR method configured with ST-CG reports failure even for examples with 1, 083
dofs. The failure is caused by exceeding 500, 000 iterations without satisfying the
stopping criterion (7.1). For this reason, the numerical results presented here for the
single level TR are obtained by using the Dogleg method.

Our choice of the constrained QP solver on each level of the multilevel hierarchy
follows concepts well known from multigrid. First, we use a fact that the low-frequency
components of the error appear more oscillatory on a coarser grid. Some iterative
solvers can eliminate those high-frequency components of the error quickly, while
leaving low frequencies essentially unchanged [51]. We employ 10 iterations of the
ST-CG method on all levels except on the coarsest, since it is known to reduce the
components of the gradient associated with large eigenvalues first [21]. In addition, the
ill-conditioning of the Hessian is not reflected in the conjugate-gradient iterations until
the gradients associated with the large eigenvalues have been made small [21]. We also
utilize the fact that the computational cost on the coarsest level is significantly lower
than on the finer levels. Our RMTR setup therefore employs the Dogleg method with
the sparse direct solver PARDISO [53] on the coarsest grid. In this way, we obtain
the exact solution of (4.1), once the trust region radius ∆i is sufficiently large. This
assumption is usually fulfilled close to the minimizer; see [28, Theorem 4.10]. Hence,
the nonlinear multilevel method mimics the behavior of linear multigrid close to the
minimizer.

7.4. Numerical results. During all simulations, the RMTR solver was config-
ured to use a V-cycle with one pre- and one post-smoothing step and the parameters
shown in Table 2.

7.4.1. Robustness with respect to time-stepping. Our first benchmark in-
vestigates the robustness of the RMTR method with respect to large time steps. We
consider examples with 1, 083 dofs and monitor the largest possible time step, dt,
that can be used during simulation, such that the solver successfully converges to the
desired tolerance. We do not test time steps larger than dt = 1 sec, since at least one
result is usually required per frame in an animation (with 1 frame = 1/24 sec).

We compare the robustness of the RMTR algorithm to the following solvers:
single-level trust region method (Algorithm 4.1), backtracking line-search (LS) New-
ton’s method [46, Chapter 3], damped Newton’s method, and the “linearized equa-
tion.” The last two solvers are included because they are commonly used in the
graphics community for cloth simulations. The damped Newton’s method is New-
ton’s method without any convergence control and with constant step size α = 0.3.
The “linearized equation” [4] denotes a solution strategy, which exploits the fact that
if the time step dt is very small, then the nonlinearity in (3.9) becomes weaker (almost
linear). Therefore, the solution of (3.9) can be found by simply solving a linear system
of equations.

Figure 10 illustrates the results. We observe that the trust region–based algo-
rithms are very robust with respect to the large time steps. For all test scenarios, the
solvers report convergence independently of the size of dt. In contrast, backtracking
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Fig. 10. Robustness of solution strategies with respect to different time steps. The benchmark
was run with 1, 083 dofs for each example.

Table 3
Number of nonlinear iterations for the single-level TR method as a function of the number of

dofs. The time step is dt = 1.

# dofs 147 363 1, 083 3, 675 13, 467 51, 483

Trampoline 1, 385 29, 426 34, 456 — — —
Drooping 1, 976 43, 475 15, 444 12, 792 — —

Re-entrant corner 8, 293 13, 965 18, 873 47, 536 334, 463 —
Drape 7, 331 53, 654 175, 132 — — —

line-search, scaled Newton’s, and “linearized equation” require smaller time steps to
maintain convergence. We also notice that with increased complexity of the example,
the performance of those solvers decreases. For instance, the difference in the num-
ber of required time steps between trust region–based methods and the “linearized
equation” approach is about 10 million for the drape example.

7.4.2. Number of nonlinear iterations per time step. Next, we compare
the convergence behavior of the RMTR method to its single-level counterpart, the
TR method. Our analysis focuses on the ability of the methods to solve the cloth
simulations as well as on their convergence behavior with respect to number of dofs.
In addition, we compare the convergence speed and the computational complexity of
both methods. During these tests, we set the time step to dt = 1.

Solvability. We analyze the performance of the trust region–based solvers by mea-
suring the number of required nonlinear iterations/V-cycles. Table 3 summarizes the
results obtained by using the single-level TR. As we can see, the number of iterations
increases rapidly with the increased number of dofs. This is not surprising, as the
condition number of the linear systems arising on each iteration grows rapidly. For
example, the condition number for the test cases with approximately 50, 000 dofs is
on the order of 1013. This is very close to one over the machine precision, and the
trust region solver reports failure because the desired stopping criterion (7.1) is never
met. We also note that solvability becomes an issue already for problems with fewer
than 4, 000 dofs. In contrast, the RMTR method behaves as a preconditioner, and it
is able to solve all our numerical examples, as shown in Table 4.

Convergence speed of RMTR. Table 4 demonstrates that the number of V-cycles
decreases with increased number of levels. Intuitively, this behavior can be explained
by the fact that the setup of our RMTR method uses approximate constrained qua-
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Table 4
Number of nonlinear V-cycles for the RMTR method as a function of the number of dofs. The

time step is dt = 1.

Example/levels 2 3 4 5 6

Trampoline 633 150 81 88 52
Drooping 4, 671 645 707 1, 636 333

Re-entrant corner 3, 188 1, 508 282 124 30
Drape 9, 732 7, 653 5, 718 792 423

dratic solvers on each level of the multilevel hierarchy. If more levels are used, the
coarse-level models are better able also to capture the low-frequency parts of the er-
ror. This is caused by the fact that a trust region method is also employed on the
coarsest level. Depending on the trust region radius, this might act more as a gra-
dient method—or smoother—than as a Newton step—or full coarse grid correction.
Consequently, adding more levels improves convergence speed, because it ensures that
a bigger part of the spectrum is covered.

The fact that the number of V-cycles required decreases as the number of levels
is increased is consistent with the theoretical results obtained in [24, Theorem 4.10].
The upper bound on the total number of successful iterations π produced by the
RMTR method is defined as

π =
L∑
l=0

πl ≤
hL(xL0,0)− h∗

θ(εg)
,(7.2)

where the h(xL0,0) is the value of the objective function at the initial iterate. The
symbol h∗ denotes a constant, such that h∗ ≤ hL(xLi,c), for every xLi,c ∈ R3nL . The
constant θ(εg) depends on the properties of the minimization problem, on the con-
stants chosen inside of Algorithm 4.2, and on the desirable stopping tolerance εg.
Interestingly, the definition of the constant θ(εg) is dimension-independent, which
makes the complexity bound (7.2) mesh-independent [24, Theorem 4.10]. While the
upper bound in (7.2) is constant, the total number of successful iterations π is de-
fined as a sum of all successful iterations over all levels. Consequently, the successful
coarse-level iterates help to decrease the number of expensive, fine-level iterates. For
instance, for a single-level method, i.e., L = 0, π represents the successful iterates
produced only on the fine level. However, for a three-grid method, i.e., L = 2, π
contains the sum of the successful coarse-level and fine-level iterates. Note that an
iteration is successful in the multilevel context if it is also accepted on the fine level;
see section 4.3.2.

Although we expect fewer V-cycles as the number of levels increases, we note
that for the Drooping example, the number of V-cycles increases for four and five
levels. This does not mean that the bound (7.2) is violated, since Table 4 reports
the total number of V-cycles rather than π. The total number of V-cycles might
increase, for instance, if the prolongated coarse-level corrections are not accepted by
the fine level; see section 4.3.2. Alternatively, the trust region radius might be too
small, which causes termination of the recursion before reaching the coarsest level; see
section 4.3.1. Despite the fact that the use of the globalization strategy might seem
to slow down convergence, its use is crucial as it provides convergence guarantees.

Computational cost: TR versus RMTR. The performance of the TR method
deteriorates with increasing number of dofs, while the performance of the RMTR
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Table 5
Number of nonlinear iterations required by TR versus the number of nonlinear V-cycles required

by the RMTR method. The simulation time step is dt = 1.

Method TR RMTR TR RMTR TR RMTR
Example/ # dofs 1, 083 3, 675 51, 483

Trampoline 34, 456 150 — 81 — 52
Drooping 15, 444 645 12,792 707 — 333

Re-entrant corner 18, 873 1, 508 47,536 282 — 30
Drape 175, 132 7, 653 — 5, 718 — 423

method improves. Table 5 provides a side-by-side comparison of the results. In order
to compare the computational cost of TR and RMTR, we focus on the computationally
most expensive parts of both algorithms: assembly of the derivatives (gradient and
Hessian) and computation of the (approximate) solution of the QP subproblem (4.1).

First, we estimate the computational cost required by the assembly routines.
Due to the sparsity of the Hessian matrices, we assume that the cost on each level,
W l, is proportional to the number of control points, i.e., W l = Cnl, where C is a
constant. Let one work unit, WL, be defined as the computational cost of matrix
assembly on the finest level. Assuming a coarsening factor of 2 between each level,
the corresponding cost on coarser levels is then given as W l = 2−2(L−l)WL. From
this, the total assembly cost W measured in work units can be computed as

W ≈
L∑
l=0

QlW l =
L∑
l=0

2−2(L−l)Ql WL,(7.3)

where Ql denotes the number of assembly calls on the level l. Let one iteration in
the RMTR solver correspond to one V-cycle. The average number of work units per
iteration is then simply

Wavg = W

#iterations .(7.4)

Table 6 shows the comparison of W and Wavg for the TR and RMTR methods
based on our examples with 1, 083 dofs. This resolution has been chosen since it is
the finest resolution for which the single-level TR method converges. We notice that
the TR method requires less than one work unit per iteration, which is due to the fact
that the derivatives are recomputed only after a successful iteration, e.g., when the
trial point is accepted. Given our RMTR setup with one pre-/post-smoothing step,
the assembly is performed every time we enter the given level. However, the number
of assembly calls on each level of RMTR can vary, as the recursion may be terminated
before reaching a given level; see section 4.3.1. In practice, we see that the RMTR
method requires roughly 2.5 work units per V-cycle, and based on (7.3) we compute
that the cost of one V-cycle of the RMTR method is approximately 2.8 times higher
than the cost of one TR iteration. However, in terms of total computational cost,
the RMTR method is significantly more efficient than the single-level TR (from 4.4
to 83.7 times). This is not surprising since the RMTR requires a considerably lower
number of V-cycles than the single-level TR iterations to achieve convergence.

Next, we estimate the computational cost of the QP solvers. We follow the same
reasoning as for the assembly cost and employ formulas (7.3) and (7.4). The quantities
W l and Ql now represent the cost of performing one QP solve and the number of calls
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Table 6
The total and average computational cost measured in work units required by the assembly

routines for the TR and RMTR methods. These numbers represent W and Wavg, respectively. The
experiment is performed for the problem with 1, 083 dofs. The RMTR method was set up with three
levels.

Total cost Average cost
Example/method TR RMTR TR/RMTR TR RMTR

Trampoline 30, 981 370 83.73 0.89 2.47
Drooping 13, 858 1, 612 8.59 0.90 2.50

Re-entrant corner 16, 632 3, 788 4.39 0.88 2.51
Drape 120, 089 19, 163 6.27 0.69 2.50

Table 7
The computational cost measured in work units for the QP solvers for the TR and RMTR

methods. These numbers represent W and Wavg, respectively. The experiment is performed for the
problems with 1, 083 dofs. The RMTR method was set up with three levels.

Total cost Average cost
Example/method TR RMTR TR/RMTR TR RMTR

Trampoline 34, 456 370 93.12 1 2.47
Drooping 15, 444 1, 612 9.58 1 2.50

Re-entrant corner 18, 873 3, 788 4.98 1 2.51
Drape 175, 132 19, 163 9.14 1 2.50

into the QP solver on a given level l, respectively. We note that the assumption that
the cost is proportional to the size of the problem is not valid for a generic QP solver.
However, our setup of the RMTR method employs a constant number of 10 iterations
of the Steihaug–Toint conjugate-gradient method (ST-CG) per smoothing step, each
with cost O(nl). On the coarsest level, l = 0, we employ the Dogleg method with a
sparse direct linear solver. Although the complexity of the sparse direct solver is in
general higher than O(n0), the difference can be hidden in the constant inside of the
complexity bound, as n0 is very small. In particular, all presented examples employ
a problem with 147 dofs on the coarsest grid. Additionally, the contribution from the
coarsest grid is scaled by the coarsening factor 2−2L, which makes the coarse grid cost
almost negligible.

Table 7 compares the computational cost needed by the QP solvers for the RMTR
and the TR method. We see that the TR method requires one work unit per iteration
because the QP solver is used once per iteration. In contrast, the RMTR method
requires around 2.5 work units per V-cycle. In spite of that, the RMTR method is
significantly more efficient in terms of the total computational cost (from 5 to 93
times). Additionally, we note that this comparison strongly favors the single-level
TR method since TR employs the Dogleg method, which is computationally more
expensive than 10 steps of ST-CG. We could make the comparison fairer by replacing
WL in (7.3) with the complexity bound of the direct solver. However, this would
only enhance the efficiency of the RMTR method compared to the single-level TR
method.

7.4.3. Reverse subdivision operator versus least square fit. Finally, we
evaluate the quality of the reverse subdivision operator (5.19). Our study compares
the performance of the RMTR method with the reverse subdivision operator versus
the RMTR method setup with the projection operator obtained by (5.18). Table 8
shows the results in terms of number of V-cycles. We see that the difference between
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Table 8
Number of V-cycles required by the RMTR method to converge for examples with 3, 675 dofs.

The RMTR method was configured with four levels.

Example/operator Least square fit Reverse subdivision

Trampoline 84 81
Drooping 659 707

Reentrant corner 277 282
Drape 5, 691 5, 718

vlI vlI+1el+1
I vlI

vI+1
I

el+1
I el+1

I

Fig. 11. Catmull–Clark boundary subdivision. Left: Edge midpoint construction (brown
square). Right: Reposition of coarse level point vl

I into vl+1
I (green diamond). (Color available

online only.)

the number of required nonlinear V-cycles is negligible. However, the reverse subdi-
vision operator offers significant benefits in terms of computational complexity and
memory requirements.

8. Conclusion. In this paper, we have applied the globally convergent recursive
multilevel trust region method [24, 28] to simulation of thin shells and cloth. The
presented multilevel framework is based on subdivision surfaces, which are also used
for the construction of prolongation and restriction operators. Additionally, we have
incorporated a reverse subdivision operator for transferring the iterates from the fine
levels to coarser levels. The novel use of this operator provides a computationally
efficient alternative to the least-square-projection operator used elsewhere. Our nu-
merical examples demonstrate the robustness of the RMTR method with respect to
large time steps. A comparison with a single-level TR method has been made, and
this has shown a reduction in the number of iterations by several orders of magni-
tude. In addition, we have shown that for problems with more than ≈ 15, 000 dofs,
the single-level trust region method does not converge, while the RMTR method does.

As future work, we intend to investigate the influence of the choice of QP solver
on the performance of the RMTR algorithm. We also hope to fully parallelize the
code to leverage both vectorization and MPI to enable experimentation with large-
scale examples. Finally, our goal is to include contact/collision handling in the overall
algorithm, as this is essential for cloth simulations.

Appendix A. Catmull–Clark subdivision: Boundary rules. We consider
two types of boundary subdivision rules; see Figure 11. The first type computes the
midpoint el+1

I of a given edge, i.e.,

el+1
I = 0.5(vlI + vlI+1).(A.1)

The second type repositions the coarse-level control point vlI into vl+1
I as

vl+1
I = 0.125el+1

I + 0.75vlI + 0.125el+1
I+1.(A.2)
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Fig. 12. Reverse subdivision rules. Left: Reconstruction of regular ghost point (in the circle).
Right: Reconstruction of corner ghost point (in the circle).

Appendix B. Catmull–Clark reverse subdivision: Reconstruction of
coarse-level ghost control points. We assume that the coarse-level inner regular
and extraordinary control points have already been constructed. The reverse subdi-
vision scheme for a regular ghost control point reformulates the edge point equation

el+1
I = (elI + vlI + f l+1

j + f l+1
I+1)/4(B.1)

as

vlI = 4el+1
I − elI − f

l+1
I − f l+1

I+1.(B.2)

Equation (B.2) states that the vlI can be obtained as a weighted sum of the fine-level
control points f l+1

I , f l+1
I+1, el+1

I together with the already reconstructed coarse-level
inner control point elI .

After the regular ghost points have been reconstructed, the corner ghost control
point vlI can be found by adjusting the face point equation

f l+1
I = 1

N

(
vlI +

N−1∑
i=1

vlI+i

)
(B.3)

for the given face FI , where N = |FI |. This leads to the following reverse subdivision
rule:

vlI = Nf l+1
I −

N−1∑
i=1

vlI+i.(B.4)

Figure 12 demonstrates the described steps.

Appendix C. Catmull–Clark reverse subdivision: Extraordinary con-
trol points with valence 3. Assume that the control cage has just one extraordinary
control point per face. If necessary, this can be achieved by performing one subdivi-
sion step in order to obtain the control cage T 0. The reverse subdivision scheme for
an extraordinary control point with ϑ = 3 then follows from (B.2) in Appendix B.
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báňská-Technická univerzita Ostrava, Czech Republic, 2015; available online at http:
//hdl.handle.net/10084/110918.

[49] M. J. D. Powell, A new algorithm for unconstrained optimization, in Nonlinear Programming,
J. B. Rosen, O. L. Mangasarian, and K. Ritter, eds., Academic Press, 1970, pp. 31–65,
https://doi.org/10.1016/B978-0-12-597050-1.50006-3.

[50] M. J. D. Powell, A hybrid method for nonlinear equations, in Numerical Methods for Non-
linear Algebraic Equations, P. Rabinowitz, ed., Gordon and Breach Science Publishers,
London, 1970, pp. 87–114.

[51] Y. Saad, Iterative Methods for Sparse Linear Systems, SIAM, Philadelphia, 2003, https://doi.
org/10.1137/1.9780898718003.

[52] F. Samavati, H.-R. Pakdel, C. Smith, and P. Prusinkiewicz, Reverse Loop Subdivision,
Technical Report 2003-730-33, University of Calgary, Calgary, AB, Canada, 2003, https:
//doi.org/10.11575/PRISM/30995.
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