
Computing the Singular Value Decomposition of 3× 3 matrices with minimal
branching and elementary floating point operations

Aleka McAdams1,2 Andrew Selle1 Rasmus Tamstorf1 Joseph Teran2,1 Eftychios Sifakis3,1

1 Walt Disney Animation Studios 2 University of California, Los Angeles
3 University of Wisconsin, Madison

Abstract

A numerical method for the computation of the Singular Value De-
composition of 3× 3 matrices is presented. The proposed method-
ology robustly handles rank-deficient matrices and guarantees or-
thonormality of the computed rotational factors. The algorithm is
tailored to the characteristics of SIMD or vector processors. In par-
ticular, it does not require any explicit branching beyond simple
conditional assignments (as in the C++ ternary operator ?:, or the
SSE4.1 instruction VBLENDPS), enabling trivial data-level paral-
lelism for any number of operations. Furthermore, no trigonometric
or other expensive operations are required; the only floating point
operations utilized are addition, multiplication, and an inexact (yet
fast) reciprocal square root which is broadly available on current
SIMD/vector architectures. The performance observed approaches
the limit of making the 3× 3 SVD a memory-bound (as opposed to
CPU-bound) operation on current SMP platforms.

Keywords: singular value decomposition, Jacobi eigenvalue algo-
rithm

1 Method overview

Let A be a real-valued, 3× 3 matrix. A factorization of A as

A = UΣVT

is guaranteed to exist, where U and V are 3×3 real orthogonal ma-
trices and Σ is a 3 × 3 diagonal matrix with real and nonnegative
diagonal entries. Since the matrix product UΣVT remains invari-
ant if the same permutation is applied to the columns of U,V and to
the diagonal entries of Σ, a common convention is to choose Σ so
that its diagonal entries appear in non-increasing order. The exact
convention followed in our method is slightly different, specifically:

• The orthogonal factors U and V will be true rotation matrices
by construction (i.e. det(U) = det(V) = 1). This is con-
trasted to the possibility of U or V having a determinant of
−1, which corresponds to a rotation combined with a reflec-
tion.

• The diagonal entries of Σ will be sorted in decreasing order of
magnitude, but will not necessarily be non-negative (relaxing
the non-negativity constraint is necessary to allow U and V to
be true rotations, since the determinant of A could be either
positive or negative). More specifically, the singular value
with the smallest magnitude (σ3, or Σ33) will have the same
sign as det(A), while the two larger singular values σ1, σ2

will be non-negative.

These conventions are motivated by applications in graphics which
require the orthogonal matrices U and V to correspond to real 3D
spatial rotations. In any case, different conventions can be enforced
as a post process with simple manipulations such as negating and/or
permuting singular values and vectors.

The algorithm first determines the factor V by computing the eige-
nanalysis of the matrix AT A = VΣ2VT which is symmetric
and positive semi-definite. This is accomplished via a modified
Jacobi iteration where the Jacobi factors are approximated using
inexpensive, elementary arithmetic operations as described in sec-
tion 2. Since the symmetric eigenanalysis also produces Σ2, and
consequently Σ itself, the remaining factor U can theoretically be
obtained as U = AVΣ−1; however this process is not applica-
ble when A (and as a result, Σ) is singular, and can also lead to
substantial loss of orthogonality in U for an ill-conditioned, yet
nonsingular, matrix A. Another possibility is to form AV = UΣ
and observe that this matrix contains the columns of U, each scaled
by the respective diagonal entry of Σ. The Gram-Schmidt process
could generate U as the orthonormal basis for AV, yet this method
would still suffer from instability in the case of near-zero singu-
lar values. Our approach is based on the QR factorization of the
matrix AV, using Givens rotations. With proper attention to some
special cases, as described in section 4, the Givens QR procedure
is guaranteed to produce a factor Q(= U) which is exactly orthog-
onal by construction, while the upper-triangular factor R will be
shown to be in fact diagonal and identical to Σ up to sign flips of
the diagonal entries.

The novel contribution of our approach lies in the computation of
the Jacobi/Givens rotations without the use of expensive arithmetic
such as trigonometric functions, square roots or even division; the
only necessary operations are addition, multiplication and an in-
exact reciprocal square root function (which is available in many
architectures and is often faster not only than square root, but stan-
dard division as well). The method is robust for any real matrix,
and converges to a given accuracy within a fixed small number of
iterations.

2 Symmetric eigenanalysis

The first step in computing the decomposition A = UΣVT is to
compute the eigenanalysis of the symmetric, positive semidefinite
matrix S = AT A = VΣ2VT . This will be performed by a variant
of the Jacobi eigenvalue algorithm [Golub and van Loan 1989].

2.1 Jacobi iteration

We provide a summary presentation of the classical Jacobi eigen-
value algorithm; for a more detailed exposition the reader is referred
to [Golub and van Loan 1989]. The Jacobi process constructs a se-
quence of similarity transforms

S(k+1) = [Q(k)]T S(k)Q(k).

Each matrix Q(k) is constructed as a Givens rotation, of the form

Q(p, q, θ) =

0BBBBBBBBBBB@

1 · · · 0 · · · 0 · · · 0
...

. . .
...

...
...

0 · · · c · · · −s · · · 0
...

...
. . .

...
...

0 · · · s · · · c · · · 0
...

...
...

. . .
...

0 · · · 0 · · · 0 · · · 1

1CCCCCCCCCCCA

...
← row p

...
← row q

...

where c = cos(θ) and s = sin(θ). The objective of every conjuga-
tion with a Given matrix Q(k) = Q(p, q, θ) is to bring the next iter-
ate S(k+1) closer to a diagonal form, by eliminating the off-diagonal
entries s

(k)
pq and s

(k)
qp (i.e. by enforcing that s

(k+1)
pq = s

(k+1)
qp = 0). It

can be shown that

X
i6=j

[s
(k+1)
ij]2 =

X
i6=j

[s
(k)
ij]2 − 2[s(k)

pq]2.

Therefore, after each Jacobi iteration, the sum of squared off-
diagonal entries of S is reduced by the sum of squares of the two
off-diagonal annihilated entries. There is a natural choice of the
entries to be eliminated that can easily seen to generate a conver-
gent process: if we annihilate the maximum off-diagonal entry of
an 3 × 3 we are guaranteed to annihilate at least 1/3 of the off-
diagonal sum-of-squares (in fact, at each iteration after the first,
this reduction will be at least 1/2 of the previous sum of squares,
since previous iterations leave only one other non-zero off-diagonal
pair).

The Jacobi iteration rapidly drives the iterates S(k) to a diagonal
form. For 3×3 matrices, 10−15 iterations are typically sufficient to
diagonalize S to within single-precision roundoff error. Although
the previous argument suggests at least linear convergence, the or-
der becomes in fact quadratic once S(k) has been brought somewhat
close to diagonal form. Additionally, it can be shown that the same
asymptotic order of convergence is attained even if the off-diagonal
elements to be eliminated are selected in a fixed, cyclic order, i.e.

(p, q) = (1, 2), (1, 3), (2, 3), (1, 2), (1, 3), . . .

This alleviates the need for conditional execution based on the mag-
nitude of the off-diagonal entries. Note: Cyclic Jacobi requires that
we always pick |θ| < π/4 to ensure convergence, an option that
is always possible as illustrated next. The rest of this section ad-
dresses the computation of the trigonometric factors c = cos(θ)
and s = sin(θ). Once the indices (p, q) of the off-diagonal pair
to be annihilated have been selected, the values of c and s depend
only on the 2 × 2 submatrix at the intersection of the p-th row and
q-th column (note that spq = sqp due to symmetry):

„
spp spq

spq sqq

«
Thus, the determination of c and s is equivalent to the problem of
diagonalizing a 2× 2 symmetric matrix.

2.2 The classical 2× 2 Givens diagonalization

Let A be a symmetric 2× 2 matrix. We seek trigonometric factors
c = cos(θ) and s = sin(θ) such that the result of the conjugation:

B = QT AQ =

„
c s
−s c

«„
a11 a12

a12 a22

«„
c −s
s c

«

=

„
c2a11 + 2csa12 + s2a22 cs(a22−a11) + (c2−s2)a12

cs(a22−a11) + (c2−s2)a12 s2a11 − 2csa12 + c2a22

«
is a diagonal matrix. Therefore, we need to enforce that

b12 = b21 = cs(a22−a11) + (c2−s2)a12 = 0

If a22−a11 =0, we can simply select θ = π/4 (or equivalently, c =

s = 1/
√

2). Otherwise, the previous condition can be rewritten as:

cs

c2 − s2
=

a12

a11 − a22

2 cos θ sin θ

cos2 θ − sin2 θ
=

2a12

a11 − a22

2 tan θ

1− tan2 θ
=

2a12

a11 − a22
(1)

tan(2θ) =
2a12

a11 − a22
(2)

From equation (2) we have θ = 1
2

arctan(2a12/(a11−a22)). If the
arc-tangent function returns value in the interval (−π/2, π/2), this
expression will guarantee |θ| < π/4 as required for convergence of
Cyclic Jacobi. Naturally, the use of (forward and inverse) trigono-
metric functions will significantly increase the cost of this computa-
tion. An alternative technique is described in [Golub and van Loan
1989] where the quadratic equation (1) is solved to yield tan θ di-
rectly, from which the sine and cosine are computed algebraically.
This approach still requires a minimum of two reciprocals, one
square root and one exact reciprocal-of-square-root in addition to
any multiply/add operations (an extra reciprocal plus a square root
will be needed if branching instructions are to be avoided).

Our proposed optimization quickly computes an approximate form
of the Givens rotation, where inaccuracy may be introduced both
in the angle computation, as well as a constant scaling of the ro-
tation matrix. However, the nature of this approximation is such
that the Jacobi procedure is only impacted by a minimal decelera-
tion, while the accuracy of the converged result is not compromised.
Our methodology requires only multiply/add operations, plus a sin-
gle inexpensive, inexact reciprocal-of-square-root evaluation (even
large relative errors are well acceptable). No branching is required,
with the exception of conditional assignments. Additional compu-
tational savings arise from the compact representation of rotations
as quaternions, instead of explicit matrices.

2.3 Approximating the trigonometric factors

In this section, we introduce a first approximation to the trigono-
metric factors c, s in the Givens matrices, which does not require
evaluating trigonometric functions or solving a quadratic. Our ap-
proach stems from an asymptotic approximation when the rotation
angle θ is small. Equation (2) suggests that this would be the case
for example when the Jacobi iteration is close to convergence and
Σ does not have repeated singular values; nevertheless, our process
is designed to guarantee reasonable progress regardless of any such
conditions.

Let us temporarily assume that θ is small. Under this assumption,
we can approximate tan(2θ) ≈ 2 tan θ. In fact, let us denote with

φ the angle that satisfies the equation tan(2θ) = 2 tan φ as an exact
identity; we can then equivalently state that when θ is small, we will
have φ ≈ θ. We summarize these approximations, in conjunction
with equation (2) as follows:

tan(2θ) =
2a12

a11 − a22
= 2 tan φ

θ�1
≈ 2 tan(θ). (3)

This expression can be rewritten to provide the following expres-
sion for cos(φ) and sin(φ) (which, in turn, approximate the trigono-
metric factors c = cos(θ) and s = sin(θ), respectively):

a12

a11 − a22
=

sin φ

cos φ
⇒

8<:
sin φ = ωa12

cos φ = ω(a11 − a22)

ω = 1/
p

a2
12 + (a11 − a22)2

(4)

What is the quality of this approximation, however, specifically for
our purposes of generating a diagonal matrix B = QT AQ? This
can be quantified by looking at the off-diagonal element b12 gener-
ated after the conjugation with these approximate Givens rotations:

b12 = cos φ sin φ(a22−a11) + (cos2 φ−sin2 φ)a12

= sin(2φ)
a22−a11

2
+ cos(2φ)a12

Eq.(2)
= sin(2φ)

a12

tan(2θ)
+ cos(2φ)a12

=
sin(2φ) cos(2θ) + cos(2φ) sin(2θ)

sin(2θ)
a12

=
sin(2φ− 2θ)

sin(2θ)
a12 ⇒

Eq.(3)
=⇒ |b12|

|a12|
=

˛̨̨̨
sin(2 arctan(tan(2θ)/2)− 2θ)

sin(2θ)

˛̨̨̨
(5)

Equation (5) provides a concise expression for the reduction of the
magnitude of the off-diagonal element, as a function of the optimal
Givens rotation angle (which is, in turn, a function of the matrix
entries). Figure 1 (solid line) illustrates the magnitude reduction
fraction as a function of the angle θ. We observe that for small
values of θ the quality of the approximation is excellent, effectively
leading to annihilation of the off-diagonal element. However, for
larger values of θ, the reduction becomes smaller, and we actually
obtain no reduction at all for values θ ≈ π/4.

The poor performance of the previous approximation when θ ≈
π/4 will be addressed by considering yet another choice for the
Givens angle φ. Equation (4) reveals that this approximate φ may
lie outside the interval (−π/4, π/4), which in contrast could have
been guaranteed for the optimal angle θ. This restriction was im-
portant in ensuring convergence of the Cyclic Jacobi method. Thus,
we consider the possibility of truncating the approximate value to
the value φ = π/4, at the very least in the case when the computed
value lies outside that interval. For this fixed choice of the Givens
angle, the off-diagonal element b12 after the conjugation becomes:

 0

 0.2

 0.4

 0.6

 0.8

 1

0 /16 /8 3 /16 /4

sin(2*atan(tan(2*t)/2)-2*t)/sin(2*t)
1/tan(2*t)

Figure 1: Approximating the trigonometric Givens factors using
tan(2θ) ≈ 2 tan θ (or by setting a fixed angle θ = π/4).The off-
diagonal magnitude reduction fraction |b12|/|a12| is plotted on the
vertical axis, as a function of the optimal Givens angle.

b12 = cos
π

4
sin

π

4
(a22−a11) + (cos2

π

4
−sin2 π

4
)a12

=
a22−a11

2
(6)

=
a12

tan(2θ)

=⇒ |b12|
|a12|

=
1

| tan(2θ)| (7)

This reduction fraction is also plotted in figure 1 (dashed line).
Note that both magnitude reduction fractions are even, and peri-
odic (T = π/2) functions, so it is sufficient to study them in the
interval [0, π/4]. Notably, if we were able to pick the best of the
two proposed approximations (in terms of the magnitude reduction
they produce) we see that a reduction fraction significantly smaller
than 1 can be guaranteed. In fact, it is possible to formalize this
selection between the two approximations; from equations (3,7) we
can solve for the intersection point of the two curves in figure 1
as θ0 = arctan(2)/2 ≈ 0.55357 (we omit the relevant trigono-
metric manipulations). The magnitude reduction ratio |b12|/|a12|
at the intersection point is equal to 1/| tan(2θ0)| = 0.5. Thus, by
selecting the best of the two approximations we are guaranteed at
least a 50% reduction in the magnitude of the off-diagonal element.
Finally, the choice about which approximation is the best one to
use can be made without resorting to the obvious angle criterion
(θ < θ0), by observing that the fixed angle φ = π/4 should be
selected only when it yields a magnitude reduction by a factor no
larger than 0.5:

|b12|
|a12|

≤ 1

2

|a11 − a22|
2|a12|

≤ 1

2

(a11 − a22)
2 ≤ a2

12

These results suggest the following algorithm

Algorithm 1 Non-trigonometric approximation of the Givens angle

1: function APPROXGIVENS(a11, a12, a22) . Returns (c, s)
2: b← [a2

12 < (a11 − a22)
2] . b is boolean

3: ω ← 1/
p

a2
12 + (a11 − a22)2

4: s← b?ωa12:
√

.5 .
√

.5 = sin(π/4)

5: c← b?ω(a11 − a22):
√

.5 .
√

.5 = cos(π/4)
6: return (c, s)
7: end function

2.4 Approximate Givens rotation using quaternions

A 3 × 3 rotation matrix can be equivalently encoded as a quater-
nion (a, b, c, d) = (cos(θ/2), sin(θ/2)v), where θ is the angle of
rotation, and v = (vx, vy, vz) is the normalized axis of rotation.
In particular, a 3 × 3 Givens rotation with (p, q) = (1, 2), i.e. a
rotation of the top-leftmost 2× 2 submatrix, has the matrix form

0@ cos θ − sin θ 0
sin θ cos θ 0

0 0 1

1A
and the equivalent quaternion representation

(cos(θ/2), 0, 0, sin(θ/2)).

The added benefit of this representation is that the quater-
nion does not need to be normalized, i.e. the quaternion
(γ cos(θ/2), 0, 0, γ sin(θ/2)), where γ ∈ R, is just as valid as
a representation of this rotation. This suggests that we could mimic
the asymptotic approximation tan(2θ) ≈ 2 tan θ of the previous
section to obtain tan(2θ) ≈ 4 tan(θ/2). This suggests the follow-
ing expression for the approximate Givens angle φ:

tan(2θ) =
2a12

a11 − a22
= 4 tan(φ/2)

θ�1
≈ 2 tan(θ). (8)

Consequently,

a12

2(a11−a22)
=

sin φ
2

cos φ
2

⇒

8><>:
sin(φ/2)=ωa12

cos(φ/2)=2ω(a11−a22)

ω=1/
q

a2
12+[2(a11−a22)]

2
(9)

Thus, we can represent this rotation with the quaternion

(2ω(a11−a22), 0, 0, ωa12). (10)

We note that this quaternion representation is equally acceptable
and accurate, regardless of the value of the scale factor ω. In fact,
even without any scaling at all, the quaternion (a11−a22, 0, 0, a12)
from a theoretical standpoint would be a perfectly accurate rep-
resentation of this rotation. The quaternions of subsequent Ja-
cobi iterations can be multiplicatively combined without normal-
ization, and even the conjugation QT AQ can be computed using
un-normalized quaternions, yielding a result that is identical to us-
ing explicit orthogonal matrices, up to a global scaling of the re-
sulting matrix. This scaling would need to be corrected just once,
at the end of the sequence of Jacobi iterations, by normalizing just
once the quaternion that combines all Jacobi rotations, and repeat-
ing the conjugation one last time. In our case, we would not even

perform this last conjugation, since we do not expect to obtain the
matrix Σ2 from the solution of the symmetric eigenproblem, but
instead compute Σ directly from the Givens QR factorization of
AV = UΣ (the product AV can be computed using the once-
normalized quaternion corresponding to matrix V).

In practice, we do have a motive to perform some normalization
of the Givens quaternion, to avoid the risk of overflow or under-
flow after a large number of Jacobi iterations. We typically never
perform more than 15-20 Jacobi iterations, so even if we scale the
quaternion to within, say, a factor of 2 away from a normalized
quaternion, any risk of overflow or underflow would be eliminated.
We found that a natural (and very inexpensive) way to perform this
normalization is to compute the scalefactor ω in equation (9) us-
ing the inexact Reciprocal-Square-Root function that is built-in and
very efficient on most modern processors. For example the SSE
RSQRTPS instruction yields a relative error of at most 0.1% while
having a latency comparable to 2x-3x of a standard packed multiply
or add (which is much less than an exact x87 square root, or even
a reciprocal computation). For reasons already explained, the ac-
curacy of the symmetric eigenanalysis is in no way affected by the
inaccuracy of this operation, and even a higher relative error would
not matter, as long as overflow and underflow are averted.

For the purposes of evaluating the magnitude reduction factor of
the off-diagonal element, it is appropriate to assume exact normal-
ization, since any residual scaling would simply affect the entire
matrix and would be corrected once at the end of the process. Once
again, we have:

b12 =
sin(2φ− 2θ)

sin(2θ)
a12 ⇒

Eq.(8)
=⇒ |b12|

|a12|
=

˛̨̨̨
sin(4 arctan(tan(2θ)/4)− 2θ)

sin(2θ)

˛̨̨̨
(11)

-1

-0.5

 0

 0.5

 1

0 /16 /8 3 /16 /4

sin(4*atan(tan(2*t)/4)-2*t)/sin(2*t)
1/tan(2*t)

Figure 2: Approximating the trigonometric Givens factors using
tan(2θ) ≈ 4 tan(θ/2) (or by setting a fixed angle θ = π/4). The
off-diagonal magnitude reduction fraction |b12|/|a12| is plotted on
the vertical axis, as a function of the optimal Givens angle.

Figure 2 compares the off-diagonal magnitude reduction fraction
obtained by the quaternion approximation of equation 9 with the
previously discussed fixed choice of φ = π/4. Equating ex-
pressions (7) and (11) we obtain that the two curves intersect at
θ0 = arctan(4 tan(π/8))/2 ≈ 0.51388 (this is the leftmost in-
tersection in figure 2), while the off-diagonal magnitude reduction

fraction at this point is cot(π/8)/4 ≈ 0.60355. Therefore, by
choosing the best option between the approximate Givens quater-
nion (10), or the fixed angle φ = π/4, we are guaranteed a magni-
tude reduction of about 60%, slightly less than the approximation
of the previous section. Nevertheless, this is strictly the worst-case
scenario, and both approximations become much more accurate af-
ter just a few Jacobi iterations once the matrix is brought closer
to a diagonal form. As in section 2.3 the choice whether to use the
asymptotic approximation, or the fixed angle φ = π/4 can be made
without checking angles or trigonometric quantities; the fixed angle
should be used when it achieves a better residual reduction than the
maximum value cot(π/8)/4 ≈ 0.60355:

|b12|
|a12|

=
|a11−a22|

2|a12|
≤ cot(π/8)

4
=

1+
√

2

4

2|a11−a22| ≤ (1+
√

2)|a12|
[2(a11−a22)]

2 ≤ (3+2
√

2)a2
12

The final algorithm becomes:

Algorithm 2 Computation of approximate Givens quaternion.

1: const γ ← 3 + 2
√

2
2: const c∗ ← cos(π/8)
3: const s∗ ← sin(π/8)
4: function APPROXGIVENSQUATERNION(a11, a12, a22)
5: ch ← 2(a11−a22) . ch ≈ cos(θ/2)
6: sh ← a12 . sh ≈ sin(θ/2)
7: b← [γs2

h < c2
h] . b is boolean

8: ω ← RSQRT(c2
h + s2

h) . RSQRT(x) ≈ 1/
√

x
9: ch ← b?ωch:c∗

10: sh ← b?ωsh:s∗
11: return (ch, 0, 0, sh) . returns a quaternion
12: end function

Note that Algorithm 2 corresponds to a Jacobi rotation with
(p, q) = (1, 2). In order to rotate another pair, the inputs and the
ordering of the quaternion elements are adjusted accordingly. We
finally address one implementation detail: it may be more efficient
(from an implementation standpoint) to compute the elements of the
actual rotation matrix Q before performing the actual conjugation,
rather than using the quaternion itself. The (unscaled) correspond-
ing rotation matrix is:

Qunscaled =

0@ c2
h−s2

h −2shch 0
2shch c2

h−s2
h 0

0 0 c2
h+s2

h

1A =

= (c2
h+s2

h)

0@ cos φ − sin φ 0
sin φ cos φ 0

0 0 1

1A = (c2
h+s2

h)Q (12)

3 Sorting the singular values

Once the orthogonal factor V has been computed, we can obtain an
expression for the product of U and Σ as

B := UΣ = UΣVT V = AV.

Note that the last expression is the one actually used to evaluate
B. Since B = UΣ, this matrix is simply the result of scaling
each column of the orthogonal factor U with the respective singular

value (i.e. the respective diagonal element of Σ). Consequently, the
magnitude of each singular value in Σ can be computed by simply
evaluating the 2-norm of the respective column of B.

We previously stated that our algorithm will be required to produce
a diagonal matrix Σ where the singular values along the diagonal
are sorted in decreasing order of magnitude. This ordering is not
merely an arbitrary convention, but will also benefit the QR factor-
ization explained later in section 4. We shall enforce this property
by reordering the columns of B in decreasing order of their 2-norm
(which will induce the same ordering in the diagonal entries of Σ,
as discussed) and also apply the same permutation to the columns
of V at the same time. In order to prove that such a transformation
is allowed, consider the individual columns of B = [b1 b2 b3] and
V = [v1 v2 v3] respectively. Since A = BVT , we have:

A =

3X
i=1

biv
T
i

Thus, if the same permutation is applied to the columns of matrices
B and V, the matrix A reconstructed as their product remains unaf-
fected. Note that it is also possible to simultaneously negate a cor-
responding pair of columns bi and vi without affecting the validity
of the decomposition. We can therefore sort the singular values by
swapping pairs of columns (bi, bj) along with their counterparts
(vi, vj) in the fashion of a bubblesort method, until the columns
of B appear in decreasing order of their 2-norm. Note that simply
swapping two columns of V will flip the sign of its determinant,
violating the property that V is a true rotation matrix; instead, we
also negate one of the two columns being swapped (both for V and
the respective column in B) which will keep V as a true rotation.
The entire process is summarized in the following pseudocode:

Algorithm 3 Singular value sort in decreasing magnitude order

1: procedure CONDSWAP(c, X, Y) . c is boolean
2: Z ← X . Z is a temporary variable
3: X ← c?Y :X
4: Y ← c?Z:Y
5: end procedure
6: procedure CONDNEGSWAP(c, X, Y) . c is boolean
7: Z ← −X . Z is a temporary variable
8: X ← c?Y :X
9: Y ← c?Z:Y

10: end procedure
11: procedure SORTSINGULARVALUES(b1, b2, b3, v1, v2, v3)
12: ρ1 ← ‖b1‖22, ρ2 ← ‖b2‖22, ρ3 ← ‖b3‖22
13: c← [ρ1 < ρ2] . c is boolean
14: CONDNEGSWAP(c, b1, b2); CONDNEGSWAP(c, v1, v2)
15: CONDSWAP(c, ρ1, ρ2)
16: c← [ρ1 < ρ3]
17: CONDNEGSWAP(c, b1, b3); CONDNEGSWAP(c, v1, v3)
18: CONDSWAP(c, ρ1, ρ3)
19: c← [ρ2 < ρ3]
20: CONDNEGSWAP(c, b2, b3); CONDNEGSWAP(c, v2, v3)
21: end procedure

Lastly, we recall that in section 2 the rotation matrix V was in fact
constructed as a quaternion q = (s, x, y, z). For the purposes of
the current section, we could either convert this representation to
an explicit 3 × 3 matrix, or simply compute the matrix B = AV
by rotating each row vector of A with the conjugate quaternion q̄.
However, if we need to produce V in quaternion form at the end
of the SVD algorithm, it would be inconvenient to convert back
and forth between matrix and quaternion representations only so
that the previously defined procedure CONDNEGSWAP could be

applied to a matrix representation of V. Fortunately, this operation
can also be expressed by a simple quaternion. In particular, note
that a function call CONDNEGSWAP(true, v1, v2) is equivalent to
replacing V with VR, where

R =

0@ 0 −1 0
1 0 0
0 0 1

1A
which is a rotation matrix, with a corresponding (un-normalized)
quaternion qR = (1, 0, 0, 1). In the case we want to make the call
to CONDNEGSWAP conditional on the variable c, the permutation
quaternion is simply qR = (1, 0, 0, c), assuming that c takes a
binary value of either 0 or 1. The quaternion corresponding to the
product VR will then simply be q · qR (which, notably, requires
only 4 additions or subtractions). The same logic can be followed
to emulate the action of CONDNEGSWAP on other pairs of columns
of V, while operating purely on its quaternion representation.

4 Computation of the factors U and Σ

We previously constructed the matrix B = AV and explained that
it is equal to the product UΣ of the two remaining unknown com-
ponents of the SVD. In the last phase of our algorithm we will com-
pute the individual factors U and Σ from the matrix B.

4.1 Extracting U and Σ via QR decomposition

The matrix B = UΣ is essentially a column scaling of U by the
respective diagonal entries of Σ. Thus, a seemingly straightfor-
ward method for computing the orthogonal matrix U would be to
simply rescale each column vector so that it has a unit norm. How-
ever, this procedure cannot be used in the case of a zero singular
value; moreover, even when a singular value is nonzero yet orders
of magnitude smaller than the other values, this normalization may
produce a matrix U that is far from orthogonal. Intuitively, this
loss of orthogonality is due in part to the fact that, when a column
of U with very small entries is multiplied with a large number to
convert this column to a unit vector, any numerical errors will be
greatly amplified. These issues are exacerbated in the case where
more than one of the singular values is equal to zero.

Our approach guarantees the orthogonality of the computed matrix
U and is based on the QR factorization of B using Givens
rotations. We start by showing the following lemma, for a general
dimension of the SVD (i.e. potentially larger than the 3× 3 case):

Lemma 1. Let U be an orthonormal n× n matrix and Σ a diag-
onal matrix of the same dimensions. Let QR = UΣ be the (not
necessarily unique) QR-factorization of the product UΣ, where
Q is orthogonal and R is upper triangular.

If the nonzero diagonal elements of Σ appear before any zero en-
tries (i.e. if Σ has k nonzero entries and [Σ]ii 6= 0, 1 ≤ i ≤ k,
while [Σ]ii = 0, k + 1 ≤ i ≤ n), then the following statements
hold true:

1. If Q = [q1 q2 · · · qn], U = [u1 u2 · · · un], rij := [R]ij ,
and Σ = diag(σ1, σ2, . . . , σn), the following statements are
true when i ∈ [1, k] :

• qi = ±ui

• rii = ±σi (with the same sign as the identity above)

• rij = 0 for any j 6= i.

2. The factor R is in fact diagonal.

Proof.

1. The i-th column of the matrix equation UΣ = QR is written
as follows:

σiui =

iX
k=1

rkiqk

We will prove the combination of the 3 properties by induc-
tion on i.

• For i = 1, we have:

σ1u1 = r11q1 ⇒ |σ1|‖u1‖2 = |r11|‖u1‖2 ⇒

⇒ |σ1| = |r11| ⇒ r11 = ±σ1

And, from the first equation, we also have q1 = ±u1

(with the same sign as in the identity r11 = ±σ1).
Also, let j 6= 1. We have:

σjuj =

jX
k=1

rkjqk

uT
1 (σjuj) = uT

1

jX

k=1

rkjqk

!

σju
T
1 uj =

jX
k=1

rkju
T
1 qk

Since j 6= i, we have uT
1 uj=0. Also, we previously

showed that q1 = ±u1, thus uT
1 qk = ±δ1k (δij is the

Kronecker delta). Combining these results with the last
equation we get:

0 =

jX
k=1

rkj(±δ1k)

= ±r1j

• For the induction step i→ i + 1 we have:

σi+1ui+1 =

i+1X
k=1

rk,i+1qk

=

iX
k=1

rk,i+1qk| {z }
=0 (induction)

+ri+1,i+1qi+1

= ri+1,i+1qi+1.

Taking the 2-norm of this equation yields, as before,
ri+1,i+1 = ±σi+1 and qi+1 = ±ui+1. Similarly, for
j 6= i + 1 we have

σjuj =

jX
k=1

rkjqk

uT
i+1 (σjuj) = uT

i+1

jX

k=1

rkjqk

!

σju
T
i+1uj =

jX
k=1

rkju
T
i+1qk

0 =

jX
k=1

rkj(±δi+1,k)

= ±ri+1,j

which completes our proof.

2. According to the properties proven in Part 1, the matrix R has
the structure

R =

„
D 0

0 R̂

«
, where D =

0B@ ±σ1

. . .
±σk

1CA
and R̂ is an upper triangular matrix of size (n−k)× (n−k).
Therefore, the system UΣ = QR is written as

UΣ = Q

„
D 0

0 R̂

«
.

Since σk+1 = · · · = σn = 0, the last (n−k) columns of this
matrix equation are written as:

0 = Q

„
0

R̂

«
.

The matrix Q is nonsingular, thus the last equation implies
that R̂ = 0, suggesting that

R =

„
D 0
0 0

«
is a purely diagonal matrix.

This lemma indicates that the QR decomposition can be used to
factorize B into an orthogonal matrix (taken as the factor U) and
a diagonal matrix which will play the role of Σ. The condition
that nonzero singular values need to precede those equal to zero
(we achieve this in our case by the sorting process in section 3)
is absolutely essential. Consider the counter example of a system
UΣ = QR with the following values :0@ −.8 .6 0

.6 .8 0
0 0 1

1A0@ 0
5

0

1A =

0@ 1 0 0
0 1 0
0 0 1

1A0@ 0 3 0
0 4 0
0 0 0

1A
The factorization on the right is a perfectly valid QR decomposi-
tion, yet R is neither diagonal, nor does it approximate Σ in any
way. By performing a strict sort, rather than a simple separation of
zero/nonzero singular values, our methodology is robust to situa-
tions where a singular value (respectively, the norm of a column of
B) is nonzero, yet much smaller than the magnitude of some other,
larger singular value. Finally, we note that this general theory does
not guarantee any particular sign for the diagonal elements in the
factor R; the convention presented in section 1 will be a conse-
quence of the methodology (Givens rotations) which we employ to
compute the QR decomposition.

4.2 Givens QR factorization

We shall use the method of Givens rotations to compute the QR
factorization, due to the simplicity of its fundamental operations
and the fact it guarantees to produce a true rotation matrix Q. In
contrast, a Gram-Schmidt procedure would require significant at-
tention to produce a true rotation matrix, especially in the presence
of small (or zero) singular values. The Householder scheme would
also be an option, albeit one that requires more complex steps, and
care needs to be taken due to the fact that it operates by constructing
orthogonal reflections rather than true rotations.

For a general n × n matrix B, the method of Givens rotations
constructs the triangular factor R by annihilating the elements be-
low the diagonal one-by-one, in a column-major lexicographical or-
der, i.e. (2, 1), (3, 1), . . . , (n, 1), (2, 2), (3, 2), . . . , (n, n−1). The
(i, j) element is annihilated by left-multiplying the result of the
previous operations with a Givens matrix Q(i, j, θij)

T , as follows:

Q(n, n-1, θn,n-1)T · · ·Q(3, 1, θ31)
T Q(2, 1, θ21)

T B = R

⇒ QT B = R⇒ B = QR

where Q = Q(2, 1, θ21)Q(3, 1, θ31) · · ·Q(n, n-1, θn,n-1).

Due to the specific order in which the elements below the diagonal
of B are being annihilated, every Givens rotation in this sequence
will not change any of the zeroes that were introduced by the Givens
rotations applied before it. Schematically, when the Givens rotation
intended to annihilate element (q, p) is ready to be applied, the fol-
lowing transformation takes place :

Q(p, q, θpq)
T

0BBBBBBBBBBBBBBBB@

a11 · · · a1q a1,q+1 · · · a1n

. . .
...

...
...

aqq aq,q+1 · · · aqn

0 aq+1,q+1 · · · aq+1,n

...
...

...
0 0 ap−1,q+1 · · · ap−1,n

apq ap,q+1 · · · ap,n

ap+1,q ap+1,q+1 · · · ap+1,n

...
...

...
anq an,q+1 · · · ann

1CCCCCCCCCCCCCCCCA
=

=

0BBBBBBBBBBBBBBBBB@

a11 · · · a1q a1,q+1 · · · a1n

. . .
...

...
...

a′qq a′q,q+1 · · · a′qn

0 aq+1,q+1 · · · aq+1,n

...
...

...
0 0 ap−1,q+1 · · · ap−1,n

0 a′p,q+1 · · · a′p,n

ap+1,q ap+1,q+1 · · · ap+1,n

...
...

...
anq an,q+1 · · · ann

1CCCCCCCCCCCCCCCCCA

.

As seen in the last equation, only rows p and q are affected, and only
from the q-th column onwards. We can also see that this Givens
rotation will succeed in annihilating the element apq if an only if

„
cos θpq sin θpq

− sin θpq cos θpq

«„
aqq

apq

«
=

„
a′qq

0

«
(13)

This property can be enforced by simply selecting:

cos θpq =
aqqp

a2
qq + a2

pq

, sin θpq =
apqp

a2
qq + a2

pq

We also observe that after applying this rotation, the sign of a′qq =p
a2

qq + a2
pq will be non-negative. As a consequence, if the Givens

rotations are constructed in this fashion, at the end of the sequence
of rotations all diagonal elements of the resulting matrix R, with the
exception of the very last one, will be non-negative. This property
satisfies the last convention we had adopted in section 1 for the sign
of the diagonal elements of Σ.

A special case that needs to be addressed occurs when both of aqq

and apq are either zero, or extremely small. In this case, the nor-
malization required to obtain the trigonometric factors cos θpq and
sin θpq can lead to a division by zero (or significant loss of accuracy,
at the very least). We detect this case by checking if a2

qq +a2
pq < ε2

for a specified threshold ε (in the same order of magnitude as our
tolerance for errors in the singular values). When this special case
is detected, we set instead:

cos θpq = signum(aqq), sin θpq = 0.

These values will still guarantee that a′qq ≥ 0 and that, ultimately,
the first n− 1 singular values in Σ will be non-negative.

4.3 Quaternion implementation of Givens QR

We conclude by illustrating a methodology that generates the
Givens rotations directly in quaternion form; we would utilize this
approach if, for the purposes of a given application, it is prefer-
able to compute the rotations U and V as quaternions. Although
it is certainly possible to convert the 3 × 3 rotation matrix U to
a quaternion as a post-process, it is preferable to construct the ro-
tations as quaternions in the first place. Doing so will avoid the
explicit matrix-to-quaternion conversion, a procedure that needs to
consider a number of different cases, and is not optimally structured
for aggressive SSE optimizations.

We will describe the methodology in the context of the first matrix
Q(2, 1, θ21) from the sequence of Givens rotations used to compute
the QR factorization; the remaining rotations will be constructed
in an analogous fashion. The matrix representation of this rotation
is :

Q(2, 1, θ) =

0@ cos θ − sin θ
sin θ cos θ

1

1A
where we dropped the subscripts in the angle θ for simplicity. In
order for the operation Q(2, 1, θ)T B to annihilate element b21 the
following condition must hold, based on equation (13) :

− sin θ · b11 + cos θ · b21 = 0

or, more generally, for the Givens rotation designed to annihilate
element bpq we will require :

− sin θ · a1 + cos θ · a2 = 0 (14)

where a1 denotes the Pivot element on the diagonal (this is element
bqq on the matrix being rotated), and a2 is the matrix entry to be
eliminated (or, bpq).

The same rotation can alternatively be represented by an (un-
normalized) quaternion q :

q = (ch, 0, 0, sh) = (γ cos
θ

2
, 0, 0, γ sin

θ

2
)

where γ is an arbitrary scaling factor. From equation (14) we get:

a2

a1
=

sin θ

cos θ
= tan θ =

2 tan θ
2

1− tan2 θ
2

. (15)

Equation (15) is essentially a quadratic equation on tan θ
2

. The two
solutions of this quadratic are:„

sh

ch
=

«
tan

θ

2
=
−a1 ±

p
a2
1 + a2

2

a2
. (16)

Since the quaternion scale factor γ is irrelevant, we are free to sim-
ply choose ch = a2 and sh = −aa±

p
a2
1 + a2

2 (with either sign).
Regardless of the sign chosen in the formula for sh, in theory both
of these values will generate a Givens rotation that successfully an-
nihilates the intended matrix entry. However, we need to pay atten-
tion to the following 2 issues:

• One of the 2 choices for sh may be prone to catastrophic can-
cellation and loss of accuracy. For example, if a1 � a2 > 0,
the operation−a1±

p
a2
1 + a2

2 will lose accuracy, as it is sub-
tracting the finite precision representations of near-identical
quantities.

• We need to ensure that after the Givens rotation, the result-
ing Pivot element a′qq is non-negative, per our convention in
section 1.

With a simple case study (which will be omitted here, in the interest
of terseness) the best choices for ch and sh are determined to be:

• If a1 < 0, then

ch = a2

sh = −a1 +
q

a2
1 + a2

2

„
= |a1|+

q
a2
1 + a2

2

«
• If a1 > 0 then

ch = a1 +
q

a2
1 + a2

2

„
= |a1|+

q
a2
1 + a2

2

«
sh = a2

For the case a1 > 0 it may be initially unclear how these values
relate to the solution of equation (15). However, we know that one
of the admissible solutions is:

sh

ch
=
−a1 +

p
a2
1 + a2

2

a2

=
(−a1 +

p
a2
1 + a2

2)(a1 +
p

a2
1 + a2

2)

a2(a1 +
p

a2
1 + a2

2)

=
a2
2

a2(a1 +
p

a2
1 + a2

2)

=
a2

a1 +
p

a2
1 + a2

2

from which the formulas for the case a1 > 0 are derived.

Finally, we need to establish that after the constructed Givens rota-
tion has been applied, the value of a′qq will be positive. Noting that
sh = γ sin(θ/2) and ch = γ cos(θ/2), we define:

c∗ := c2
h − s2

h = γ2(cos2
θ

2
− sin2 θ

2
) = γ2 cos θ

s∗ := 2shc2
h = γ2 sin

θ

2
cos

θ

2
= γ2 sin θ

Thus, we can obtain the sine and cosine of of the Givens angle theta
by normalizing:

cos θ =
c∗p

c2
∗ + s2

∗
, sin θ =

s∗p
c2
∗ + s2

∗

With the assistance of these formulas, we can verify that the values
chosen for ch, sh, either for a1 > 0 or a1 < 0 will ultimately yield
(omitting the necessary, yet tedious algebraic reductions):

cos θ =
a1p

a2
1 + a2

2

, sin θ =
a2p

a2
1 + a2

2

.

As a consequence aqq = a1 cos θ + a2 sin θ =
p

a2
1 + a2

2 ≥ 0.
In contrast, some of the roots of equation (15) which were not
used would have produced cos θ = −a1/

p
a2
1 + a2

2, and sin θ =

−a2/
p

a2
1 + a2

2. These values would have also eliminated element
a′pq , but would have produced a nonpositive diagonal element a′qq

instead. As in the Givens Jacobi procedure of section 2, equation
(12) can be used to obtain a (un-normalized) version of the corre-
sponding 3×3 rotation matrix, if such representation of the Givens
rotation is desired. The entire procedure is summarized in Algo-
rithm 4; note that the additional checks in lines 3,4 of the pseu-
docode are designed to safeguard against division by (near-)zero
when both elements a1 and a2 are extremely small. The threshold
value ε is set to our tolerance for the magnitude of the elements
remaining below the diagonal of R after the Givens procedure is
concluded.

Algorithm 4 Computation Givens quaternion for QR factorization

1: function QRGIVENSQUATERNION(a1, a2)
2: ρ←

p
a2
1 + a2

2

3: sh ← [ρ > ε]?a2:0
4: ch ← |a1|+ max(ρ, ε)
5: b← [a1 < 0] . b is boolean
6: CONDSWAP(b, sh, ch) . CONDSWAP defined in Alg. 3
7: ω ← RSQRT(c2

h + s2
h) . RSQRT(x) ≈ 1/

√
x

8: ch ← ωch

9: sh ← ωsh

10: return (ch, 0, 0, sh) . returns a quaternion
11: end function

Note The quaternion representation of the rotational factors U
and V has limited our need for an exact square root (or reciprocal
square root) operation. However, such an exact normalization will
be needed at least once, at the end of the SVD algorithm to remove
any accumulated scaling. In addition, Algorithm 4 calls for an exact
square root in line 2. For these purposes, we found it sufficient to
improve the accuracy of RSQRTPS by performing one iteration of
Newton’s method for the equation

f(y) =
1

y2
− x = 0

(the solution of this equation is exactly 1/
√

x), as detailed in
[Lomont 2003]. The resulting, more accurate versions of the square
root function (and its reciprocal) are summarized in pseudocode as
follows:

Algorithm 5 Improved accuracy SQRT and RSQRT

1: function ACCURATERSQRT(x)
2: y ←SQRT(x)
3: y ← y ·

`
3− xy2)

‹
2

4: return y.
5: end function
6: function ACCURATESQRT(x)
7: return x · ACCURATERSQRT(x)
8: end function

5 Results and performance

We have implemented and tested a SIMD, multithreaded version
of our algorithm, using explicit SSE intrinsics. The following per-
formance measurements were captured on a 12-core/24-thread (hy-
perthreading enabled) 2.66GHz Intel Xeon X5650 server, using the
Intel C++ compiler for Linux, version 12.0.3. We benchmarked our

code on the computation of 224 ≈ 16.7M decompositions of ma-
trices with uniformly random elements, normalized such that the
Frobenius norm of each input matrix is equal to one. For the pur-
poses of this benchmark, we fixed the number of Jacobi sweeps
(using our approximate, quaternion-based formulation) to a con-
stant number of 4 iterations. Naturally, various degrees of accuracy
can be obtained by using a different count of Jacobi iterations; how-
ever, for our 16.7M uniformly random, unit-normalized matrices,
this number of iterations resulted in:

• The maximum magnitude among off-diagonal entries after the
symmetric eigenanalysis was 0.004.

• A 99.9% percentile of input matrices achieved a maximum
off-diagonal magnitude of less than 0.0005.

• The average maximum off-diagonal magnitude across all in-
put matrices was 3× 10−6.

This level of accuracy was deemed well appropriate for the pur-
poses of the accompanying submission [McAdams et al. 2011].

5.1 Performance and scalability

Figure 3 illustrates the total runtime of our SVD algorithm on the
sample input of 224 ≈ 16.7M random matrices (of course, since
our algorithm has completely fixed control flow, computation time
is input-independent). We generally observed near-linear speedup
between single core and 12-core performance. Observed deviations
include:

• We observed an additional ∼ 25% performance boost when
moving from a 12-core/12-thread to a 12-core/24-thread
setup, leveraging the hyperthreading capability of the pro-
cessor. We attribute this additional acceleration to the hiding
of instruction latency of our dense, explicitly vectorized code
achieved in the hyperthreading setting.

• Executions with just a single core per socket take advantage
of the frequency boost of single-threaded runs, native in the
Nehalem architecture.

0

0.5

1

1.5

2

2.5

0

2

4

6

8

10

12

14

16

1c1t 2c2t 4c4t 6c6t 8c8t 10c10t 12c12t 12c24t

Tim
e (s)Sp

ee
du

p

Speedup

Time (s)

Figure 3: Execution times, and speedup relative to the single-
thread baseline performance of our SVD algorithm, on a dual
socket Intel Xeon X5650 server. Benchmark includes a total of 224

decompositions. McNt denotes an M -core, N -thread execution.

5.2 Comparison with other eigenanalysis methods

Figure 4 provides a comparison between our method, and popular
alternatives for solving variants of eigenvalue problems. The meth-
ods being compared include:

• Our method, with all the necessary computation overhead re-
quired to compute the rotational factors of the SVD in quater-
nion form. Explicitly SIMD vectorized.

• Our method, with the SVD factors being computed only in
matrix (not quaternion) form. (Note that [McAdams et al.
2011] requires a slightly more expensive variant of these two
options, requiring both a quaternion representation of the ro-
tation R = UVT , as well as an explicit matrix form of V
itself). Explicitly SIMD vectorized.

• The symmetric eigenanalysis component only of our method.
A constant four modified Jacobi sweeps are used. Explicitly
SIMD vectorized.

• The symmetric eigenanalysis component only of the Polar
Decomposition in [Rivers and James 2007]. No warm starts
have been used; the number of Jacobi sweeps is fixed to three,
which produces an average accuracy comparable to 4 sweeps
of our modified Jacobi procedure. Scalar implementation only
(multithreading used without vectorization).

• Computation of eigenvalues of a symmetric 3× 3 matrix, us-
ing a closed-form solution [Smith 1961]. Scalar implementa-
tion only.

• A quaternion-based implementation of the Jacobi
procedure for the 3 × 3 symmetric eigenanalysis
(http://www.melax.com/diag.html?attredirects=0).

1core, 1thread 12core, 24thread
Complete SVD computation

with rotations in quaternion form
(our method, 4‐wide SIMD)

147 9.06

Complete SVD computation
with rotations in matrix form
(our method, 4‐wide SIMD)

121 7.45

Symmetric eigenanalysis only
(our method, 4‐wide SIMD) 81.4 4.78
Symmetric eigenanalysis only

([Rivers and James 2007], scalar) 460 31.6
Closed‐form eigenvalue
computation only (scalar) 112 7.03

Computation of diagonalizing
quaternion (scalar) 568 34.3

Time per decomposition (ns)
Method

Figure 4: Comparison of various algorithm for 3 × 3 eigenanal-
ysis tasks. Single threaded and 12-core/24-thread times are given,
normalized to the time required for every individual decomposition.
Note that some of the methods may not be directly comparable; re-
fer to the text for a discussion of differences and assumptions.

It should be noted that these performance numbers cannot be taken
as absolute and definitive measures of the superiority of an indi-
vidual algorithm, since a number of factors have to be considered
before accepting these figures as commensurate. Namely:

• Many variants only address the symmetric eigenanalysis
problem, instead of the entire SVD (note that for our algo-
rithm we need not only the polar decomposition, but the fac-
tor V of the SVD as well). In order to allow for a more fair

comparison with these methods, we conducted comparisons
with a prefix of our method, that stops when the symmetric
eigenanalysis has been computed.

• Instead of relying on published performance figures, we re-
ran the best implementations of these techniques we could
find, with the same machine/compiler/optimization settings
used for our code. Also, we multithreaded many of these
algorithms to give them the same benefit of parallel execu-
tion (including the latency-hiding features of hyperthreading,
when available).

• For some of these alternative algorithms (or parts thereof) we
have reasonable expectation of SIMD potential. When com-
paring our approach to these methods, one should normalize
to the same vector width. Note however that this SIMD po-
tential may often NOT apply to the entire SVD process, but
only a fraction of it (e.g. the symmetric eigenanalysis).

• Stopping criteria. Some alternative algorithms iterate until a
certain criterion has been satisfied (e.g. the maximum off-
diagonal element has been reduced below a certain threshold).
Instead, in our approach we chose to implement a fixed num-
ber of Jacobi sweeps. The reason for this choice is that when
using SSE/SIMD the iteration cannot be conveniently stopped
for only some out of the decompositions that are packed into
an SIMD sequence. We previously explained why our choice
of 4 sweeps is a reasonable one.

• Perhaps the most important differentiating factor is the fol-
lowing: When attempting to implement alternative SVD
methods as a part of an end-to-end system as [McAdams et al.
2011], we realized that certain alternatives were simply not
acceptable for the purposes of specific applications. A sim-
ple example is the FastLSM-type decomposition [Rivers and
James 2007], which computes the factor S of F = RS us-
ing a Jacobi symmetric eigenanalysis, and then forms R as
R = FS−1. The way S is constructed, it is always a positive
definite matrix; thus, in the presence of inversion where often
det(F) < 0, the produced polar decomposition will produce
a factor R that contains a reflection. (i.e. det(R) = −1).
In cases with near-zero singular values, the produced factor
R may severely lack orthogonality as well. See [McAdams
et al. 2011] for a further discussion of this issue.

References
GOLUB, G., AND VAN LOAN, C. 1989. Matrix Computations. The

John Hopkins University Press.
LOMONT, C. 2003. Fast inverse square root. Purdue University,

http://www.lomont.org/Math/Papers/2003/InvSqrt.pdf .
MCADAMS, A., ZHU, Y., SELLE, A., EMPEY, M., TAMSTORF,

R., TERAN, J., AND SIFAKIS, E. 2011. Efficient elasticity
for character skinning with contact and collisions. ACM Trans.
Graph..

RIVERS, A., AND JAMES, D. 2007. FastLSM: fast lattice shape
matching for robust real-time deformation. ACM Trans. Graph.
(SIGGRAPH Proc.) 26, 3.

SMITH, O. K. 1961. Eigenvalues of a symmetric 3x3 matrix. Com-
mun. ACM 4 (April), 168–.

