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1 Derivation of corotational elasticity

The simple material model known as linear elasticity uses the following definition for
the energy density function

ΨLE = µ‖ε‖2
F +

λ

2
tr2ε

where µ and λ are the Lamé coefficients and ε is the so-called small strain tensor,
defined as

ε =
1
2
(F + FT )− I.

The linear elasticity model is known to produce jarring artifacts, especially under large
deformation due to the fact it is not rotationally invariant. That is, the values of the
energy associated with two different deformed states, each of which is a rotation of
the other (i.e. φ1(X) = R0φ2, or F1(X) = R0F1(X), for any X) do not coincide,
which contradicts the intuitive property that a rigid rotation of an object keeps the
internal elastic forces unchanged, with respect to the body’s frame of reference.

The corotational elasticity model improves on the physical plausibility of linear elas-
ticity, by evaluating the strain tensor in a local coordinate frame that matches the world
space rotation at any given material point. This rotation is obtained from the polar de-
composition of the deformation gradient F = RS, where R is a rotation matrix and S
is a symmetric tensor. We define the modified strain measure used in corotated elastic-
ity by replacing F with RT F (= S, the un-rotated version of the deformation gradient)
in the expression for the small strain tensor

ε̂(F) = ε(RT F) =
1
2

(
RT F + (RT F)T

)
− I = S− I

Substituting ε̂ for ε in the energy definition, we obtain the energy density function for
corotational linear elasticity:

Ψ = µ‖S− I‖2
F +

λ

2
tr2(S− I) (1)
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In addition to this definition, we may also use the following two expressions which
can be shown to be equivalent to equation (1) using the properties of the trace and the
Frobenius norm:

Ψ = µ‖F−R‖2
F +

λ

2
tr2(RT F− I), (2)

or Ψ = µ‖Σ− I‖2
F +

λ

2
tr2(Σ− I) (3)

In the last expression Σ is the diagonal matrix containing the singular values from the
Singular Value Decomposition F = UΣVT of the deformation gradient (U and V are
3 × 3 rotation matrices). Equation (3) also reveals that the energy only depends on a
subset of the information contained in the 9 entries of F, namely Ψ is only a function
of the 3 singular values. It also indicates that corotational linear elasticity is isotropic:
The energy of a given deformation is not only invariant under world-space rotations, but
also independent of material-space rotations, or formally Ψ[φ(X)] = Ψ[R1φ(R2X)]
for any rotations R1,R2. In simpler terms, the energy produced by stretching or com-
pressing along a given direction depends only on the stretch or compression ratio, not
the orientation of the axis of deformation.

We can also use the previous definitions of the energy to obtain an expression of the
1st Piola-Kirchhoff stress tensor. First, we will need the following 2 lemmas:

Lemma 1. If R is an orthogonal matrix, then RTδR is skew-symmetric.

Proof. If R is orthogonal, then

RT R = I ⇒ δ(RT R) = 0 ⇒ δRT R + RTδR = 0 ⇒

⇒ (RTδR)T + RTδR = 0

Lemma 2. tr(δS) = tr(RTδF)

Proof. We have

tr(δS) = tr(δ(RT F)) = tr(δRT F + RTδF) =

= tr(δRT RS) + tr(RTδF) = (RTδR) :S + tr(RTδF)

and, from Lemma 1, we have (RTδR) : S = 0, since this is a contraction of a skew-
symmetric matrix with a symmetric one.

We now compute the energy differential δΨ form equation (2) as
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Ψ = µtr[(F−R)T (F−R)] +
λ

2
tr2(RT F− I)

= µ[tr(FT F)−tr(RT F)−tr(FT R)+tr(RT R)]+
λ

2
tr2(S−I)

= µ[tr(FT F)− 2tr(S) + tr(I)] +
λ

2
tr2(S−I)

δΨ = µ[2tr(FTδF)− 2tr(δS)] + λ tr(S−I)tr(δS)
Lm.2= 2µ[tr(FTδF)− tr(RTδF)] + λ tr(S−I)tr(RTδF)
= [2µ(F−R) + λ tr(S−I)R] :δF

Since P = ∂Ψ/∂F, we have δΨ = P :δF, thus:

P = 2µ(F−R) + λ tr(S−I)R

(or P = R[2µ(S−I) + λ tr(S−I)I])

By substituting this expression for P into the equilibrium condition divP+g = 0,
we obtain the (continuous) governing equations for the static equilibrium problem.
Finally, it is noteworthy that even though the energy Ψ was a function of R, and P =
∂Ψ/∂F, the formula for the 1st Piola-Kirchhoff stress ultimately only requires the
value of R and not its derivatives. This was a consequence of the equality (RTδR) :
S = 0 demonstrated in Lemma 2, which spares us the computation of the rotational
differential δR. This strategic cancellation will resurface in our analysis of the discrete
governing equations in the next sections.

2 Differential of the polar decomposition

Let F = RS be the polar decomposition of the 3×3 tensor F, where R is an orthonor-
mal rotation matrix, and S is symmetric. Taking differentials we get

δF = δR · S + RδS

RT δF = (RT δR)S + δS (4)

Since R is a rotation matrix, we have

RT R = I ⇒ δ(RT R) = 0 ⇒

⇒ δRT R + RT δR = 0 ⇒ (RT δR)T + RT δR = 0

Since RT δR is a skew-symmetric tensor, it can be written as a cross-product operator
r×, where r = (r1, r2, r3) and

r× =

 0 −r3 r2

r3 0 −r1

−r2 r1 0


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Let us name W = RT δF and rewrite equation (4) as

δS = W − r×S

= W −

 0 −r3 r2

r3 0 −r1

−r2 r1 0

  s11 s12 s13

s12 s22 s23

s13 s23 s33


=

 ∗ w12 + r3s22 − r2s23 w13 + r3s23 − r2s33

w21 − r3s11 + r1s13 ∗ w23 − r3s13 + r1s33

w31 + r2s11 − r1s12 w32 + r2s12 − r1s22 ∗


(entries marked with ∗ are not important for our proof)

The symmetry of the differential δS gives rise to the equations

(δS)32 = (δS)23
w32 + r2s12 − r1s22 = w23 − r3s13 + r1s33

s12r2 + s13r3 − s22r1 − s33r1 = w23 − w32

s11r1 + s12r2 + s13r3 − (s11 + s22 + s33)r1 = w23 − w32

We can see that the last equation is the first row of the system

(S− tr(S)I)r =

 w23 − w32

w31 − w13

w12 − w21

 = w

and the other 2 equations come from the equality of the other 2 symmetric pairs. We
can then compute δR = Rr× and δS = W − r×S.

Finally, the cross product matrix r× can be written as r× = −E : r, where E is
the alternating tensor (or Levi-Civita symbol). Similarly, the equation that defines w
is written as w = ET : W. Combining these expressions we obtain the following
exression for δR, which reveals the symmetry of the derivative ∂R/∂F:

δR = R
[
E :

(
(tr(S)I− S)−1 (

ET : (RT δF)
))]

.

3 Computing the diagonal part of the stiffness matrix

We focus our analysis on the contribution of each individual element Ωe to the diago-
nal part of the global stiffness matrix. Additionally, we will only construct the diagonal
part of the matrix Kaux (denoted simply as K for the remaining of this section), cor-
responding to the auxiliary energy term Ψaux. The Laplace component of the energy
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yields a constant stiffness matrix for all elements, which can be added to Kaux in the
end of this process.

We shall focus on computing the diagonal entry of the elemental stiffness matrix, cor-
responding to the j-th component of the i-th element vertex (see figure 1). Let δx be
the 24-dimensional vector containing the stacked nodal displacements for each node in
Ωe. Additionally, set δx

(q)
p = δipδjq, that is we set a unit entry to the element corre-

sponding to x
(j)
i and zero everywhere else. The vector δx thus constructed can be used

to probe the diagonal entry corresponding to the degree of freedom in question as:

d = δxT Kδx = −δxT δf

where δf is the force differential incurred by the constructed displacement. Addition-
ally, if δP is the stress differential corresponding to this particular displacement δx,
section 5 of the paper establishes that

−δxT δf = Ve(δF : T : δF).

where T = ∂P/∂F. We will leverage this expression, in order to compute the diagonal
element. For simplicity we will not concern ourselves with the global scalefactor Ve,
which can simply be applied to the entire constructed system, and will compute the
diagonal entry using

d = δF : T : δF = δP : δF = (RT δP) : (RT δF) = δP̂ : δF̂ =

= δP̂sym : δF̂sym + δP̂skew : δF̂skew

where the last equation is due to the decoupled action of the tensor defined as T̂ in
section 5, across the symmetric and skew symmetric subspaces.

Since δx
(q)
p = δipδjq, we have:

δFqr =
∑

p

Grpδx
(q)
p =

∑
p

Grpδipδjq = Griδjq

Thus

[δF̂]pr = [RT δF]pr =
∑

q

RqpδFqr =
∑

q

RqpGriδjq = RjpGri.

This implies that δF̂ = rgT , where rT is the j-th row of R, and g (which is a constant)
is the i-th row of G.

Finally we observe that

ET : δF̂skew = ET : δF̂ = ET : (rgT ) = (E : g)r
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Figure 1: Geometric configuration of an individual cube element Ωe

where the last equality is due to the symmetries of the alternating tensor. In our paper
we used the notation Mi = E : g, thus the last equation becomes

ET : δF̂skew = Mir.

We can now apply the formulations of section 5, to obtain

δP̂sym : δF̂sym = λtr(δF̂sym)I : δF̂sym = λtr2(δF̂sym) =

= λtr2(δF̂) = λtr2(rgT ) = rT (λggT )r

δP̂skew : δF̂skew =
(
ET : δF̂skew

)T

L
(
ET : δF̂skew

)
= rT MT

i LMir

Adding these two expressions, the diagonal term becomes

d = rT Nir, where Ni = λggT + MT
i LMi

As we noted in the paper, Ni does not vary across elements, and can be precomputed
and stored. Finally, we have not added the contribution of the Laplace term Ψ∆ to
the diagonal part; as we discussed, intuitively this term generates the standard 7-point
discretization of the scaled Laplace operator −2µ∆ on every component, and every
node of the grid. The central point of this scaled 7-point Laplacian equals 12µ/h2,
and is equally distributed to the 8 incident elements of each node, for a contribution of
(3µ)/(2h2) on each one. These values can, of course, be verified directly, by comput-
ing the Hessian of the discrete term Ψ∆ as defined in section 4. Ultimately, with the
addition of the Laplace term, the element contribution to the degree of freedom x

(j)
i

becomes:
dtotal =

3µ

2h2
+ rT Nir
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