
Topology-Driven Vectorization of Clean Line Drawings

Gioacchino Noris1,2 Alexander Hornung2 Robert W. Sumner2 Maryann Simmons3 Markus Gross1,2
1ETH Zurich 2Disney Research Zurich 3Walt Disney Animation Studios

Abstract

Vectorization provides a link between raster scans of pencil-and-
paper drawings and modern digital processing algorithms that re-
quire accurate vector representations. Even when input drawings
are comprised of clean, crisp lines, inherent ambiguities near junc-
tions make vectorization deceptively difficult. As a consequence,
current vectorization approaches often fail to faithfully capture the
junctions of drawn strokes. We propose a vectorization algorithm
specialized for clean line drawings that analyzes the drawing’s
topology in order to overcome junction ambiguities. A gradient-
based pixel clustering technique facilitates topology computation.
This topological information is exploited during centerline extrac-
tion by a new “reverse drawing” procedure that reconstructs all pos-
sible drawing states prior to the creation of a junction and then se-
lects the most likely stroke configuration. For cases where the auto-
matic result does not match the artist’s interpretation, our drawing
analysis enables an efficient user interface to easily adjust the junc-
tion location. We demonstrate results on professional examples and
evaluate the vectorization quality with quantitative comparison to
hand-traced centerlines as well as the results of leading commercial
algorithms.

1 Introduction

Raster and vector representations form the foundation upon which
nearly all two-dimensional graphics is built. Raster images can rep-
resent extremely rich detail but do not encode the kind of seman-
tic information that promotes editing. Vector images, on the other
hand, abstract image content as mathematical primitives such as
lines and arcs that facilitate editing but can limit detail. While con-
verting from a vector to a raster representation is a straightforward
sampling operation, the complementary procedure of vectorization
is significantly more difficult since it involves inferring high-level
abstractions from low-level pixel content.

Hand-drawn 2D animation represents one particularly important
application area of vectorization. The expressiveness, efficiency,
and tactile control afforded by real pencil and paper are yet to be
matched by digital drawing tools, and therefore 2D animations are
often still hand-drawn on paper and then scanned. The content in
the resulting raster images cannot be easily edited or used with
higher level algorithms that require a stroke-based vector repre-
sentation, such as computer-assisted inbetweening [Whited et al.
2010]. A similar problem exists even when digital drawing tools
are used, since artists often build up lines with many short strokes,
leading to an unorganized collection of tiny unconnected segments
that are not amenable to further high-level processing. In this do-
main, an automated vectorization approach is essential as a feature
animation can contain hundreds of thousands of individual draw-
ings.

Loose and sketchy drawings contain a great deal of ambiguity
which makes automatic vectorization extremely difficult. At the
other end of the spectrum, “clean” drawings are defined by crisp,
distinct lines and thus present the ideal input for vectorization.
However, even in this case, ambiguities at stroke junctions make
vectorization deceptively difficult. Due to its fixed structure and
limited resolution, the regular grid of a raster image is ill-suited
to represent regions where many strokes come together, overlap,

a b c

Figure 1: Vectorization Challenges. Noise (a) and spatially adja-
cent strokes (b) require fine tuning of threshold parameters in exist-
ing approaches. Even for clean, high resolution input images, the
superposition of strokes near junctions and sharp corners results in
inaccurate centerline placement (c). (Results of Adobe Live Trace
for different threshold settings shown in purple and green.)

cross, or join. As a consequence, current vectorization algorithms
often fail at accurately representing junctions.

The poor quality of junction reconstruction is due in part to the
local nature of existing vectorization algorithms: extracted lines
result solely from the information contained in a fixed-size pixel
neighborhood. In practice, a larger scope is often necessary to un-
derstand the inherent structure of the strokes defining a junction. In
this sense, one can consider these stroke relationships as non-local.
Motivated by this observation, we propose a non-local vectoriza-
tion algorithm that employs the analysis of a drawing’s topology in
order to extract high-quality centerlines and junctions from clean
drawings.

The first step of our approach analyzes the input image to derive the
stroke topology. Here a gradient-based pixel clustering technique
is employed that facilitates the extraction of the correct topology in
under-sampled regions of the drawing. This topological informa-
tion is exploited during centerline extraction by a “reverse drawing”
procedure that reconstructs all possible drawing states prior to the
creation of a junction and selects the most likely stroke configura-
tion. If the automatic result does not match the artist’s interpreta-
tion, our drawing analysis enables an efficient user interface to eas-
ily adjust the junction location. We demonstrate results on profes-
sional examples and evaluate the vectorization quality with quanti-
tative comparison to centerlines hand-traced by an expert artist as
well as with side-by-side comparisons to output from leading com-
mercial methods.

Our system fits naturally into current pipelines to enable vector pro-
cessing of scanned drawings. We make the technical contributions
of the gradient-based pixel clustering procedure for accurate topo-
logical analysis as well as the reverse drawing procedure for pro-
ducing the most plausible junction configurations. For either hand-
or digitally-drawn input, our work provides a bridging technology
that converts drawings into a format designed for further editing,
automatic inbetweening, or other advanced vector-based process-
ing algorithms.

2 Related Work

Existing vectorization methods can be roughly classified into two
groups based on whether they are designed to process image or line
data. Techniques for the vectorization of general images make the
assumption that the image content can be represented by a collec-
tion of boundary curves, together with smooth interpolating func-
tions between the curves. In one family of approaches, the im-

2

age is first segmented into regions by, for example, triangulation
or using quad-dominant gradient meshes, and then the region inte-
riors are filled with smooth gradients [Lecot and Lévy 2006; Sun
et al. 2007; Xia et al. 2009]. Alternatively, using diffusion curves,
the smooth interior can be computed by solving a Poisson equation
with the curves as boundary constraints [Orzan et al. 2008]. Zhang
and colleagues [2009] present an approach specifically tailored for
temporally coherent cartoon animations, while Sýkora and cowork-
ers [2005] vectorize regions of cartoon frames for the purpose of
compression. Both address final cartoon frames with all colored
foreground and background layers.

A related problem is the extraction of curve skeletons from 2D
shape boundaries using variational methods [Cornea et al. 2007].
Additional hybrid methods seek to find centerlines in images. In
the field of medical imaging, blood vessel extraction requires iden-
tifying and reconstructing the tubular structures from images and
scans. A range of techniques has been developed [Kirbas and Quek
2000], from pattern recognition, to model-based and tracking-based
methods. In this domain, Whited and colleagues [2009] present a
semi-automatic centerline extraction from networks of strokes that
also works in more general images (e.g. river networks from satel-
lite imagery). While effective for vectorizing general image con-
tent, none of the above methods are designed to work with line
drawings and do not sufficiently address the accurate extraction of
centerlines and junctions.

The second group of methods is primarily concerned with vec-
torization of line drawings such as technical layouts. Prominent
approaches are based on tracing [Freeman 1974], thinning [Lam
et al. 1992], or methods utilizing contours or projections such as
the Hough transform [Liu and Dori 1998]. Due to the focus on
technical images, many of these methods are restricted to fitting
straight line segments to input drawings [Janssen and Vossepoel
1997]. Exceptions include the method by Chang and Yan [1998],
which fits Bezier curves, and the method by Zou and Yan [2001],
which focuses on issues such as jaggy line boundaries and junc-
tion points. Hilaire and Tombre [2006] also address robustness and
describe fitting of higher order primitives such as arcs in addition
to line segments. Their method mainly addresses issues found in
binary technical drawings and cannot be easily generalized to free-
hand sketches. Bartolo et al. [2007] describe an approach based
on Gabor and Kalman filtering in order to convert rough scribbles
into a vectorized representation. When boundaries are well defined,
skeleton methods [Lakshmi and Punithavalli 2009] produce good
vector centerlines that could be used to represent line drawings.
However distorted skeleton centerlines appear at junctions.

Finally, commercial tools for vectorization of line art include Toon
Boom Harmony, Adobe Live Trace, CorelDRAW, VectorEye, Vec-
torMagic, and AutoTrace.

In many situations, existing methods and techniques provide high-
quality results. However, strokes drawn very close together and
junctions areas are usually poorly reconstructed. In most cases,
this limitation arises from an algorithm that employs local operators
without considering the overall structure of the drawing. Such in-
formation is needed to accurately reconstruct stroke centerlines and
junction points, and to perform more sophisticated editing opera-
tions such as morphing and inbetweening. In our work we specifi-
cally address these open challenges.

3 Overview of Approach

The goal of vectorization is to extract stroke centerlines and a net-
work of vector curves and junctions from an input raster image of a
line drawing.

Current vectorization techniques face two major challenges. The

Step 1

Step 2

Step 3

a

b

c

d

Figure 2: Method Overview. Step 1: First, our algorithm disam-
biguates the input pixels using a gradient-based clustering process.
Step 2: From the clusters, the topological skeleton of the drawing
is extracted. Step 3: By utilizing the topological information, our
reverse drawing procedure extracts accurate centerline estimates
and junction positions.

first problem, illustrated in Figure 1a,b, is insufficient local dis-
crimination of individual strokes due to noise and spatial proximity
of strokes. The second problem, which is of a global nature, is the
difficulty of obtaining accurate estimation of centerlines at junc-
tions. It is a global problem because it requires information about
the drawing topology and stroke configuration (see Figure 1b,c and
also Figure 5). Both problems compromise centerline estimates and
result in bad vectorization quality using existing techniques.

The algorithm we propose for vectorization of line drawings ad-
dresses these problems with a novel bottom-up analysis, which
translates into three successive processing phases; each step of the
algorithm increases the level of abstraction of the representation,
until accurate centerlines can be reconstructed.

Step 1: Stroke Disambiguation by Clustering: Our first observa-
tion is that, in line drawings, the color gradient at each input pixel
often provides a good local estimate of the center of a nearby stroke
centerline (see Figure 2a). We show that a clustering approach,
which moves pixels along the gradient field based on the notion
of gradient “confidence”, enables effective local disambiguation of
strokes (Figure 2b) and compares favorably to existing skeletoniza-
tion techniques.

Step 2: Topology Extraction: After clustering, the pixels are con-
nected to form a cluster graph (Figure 2b). The second phase of our
algorithm then analyzes this cluster graph to compute the underly-
ing topological skeleton of the drawing (Figure 2c). This skele-
ton represents the individual stroke segments, stroke endpoints, and
junctions between stroke segments. The proposed procedure is

3

Stroke
Pro�le

Gradient

Band 1 Band 2

0

0

+

-
-

Figure 3: The gradient threshold ε defines two bands of pixels with
opposite gradient directions.

based on the computation of minimum spanning trees as an efficient
solution for global topology extraction even on large drawings with
complex cluster graphs.

Step 3: Centerline Reconstruction and Reverse Drawing: Us-
ing the topology of the cluster graph, the centerlines of the drawing
can be extracted (Figure 2d). Particular care is taken in inherently
ambiguous regions like junctions. The novelty of this approach is a
topology-driven identification of such ambiguous regions, followed
by an exploration of all the possible stroke configurations in a pro-
cess we refer to as reverse drawing. We first score pairs of incident
stroke segments at a junction and then select the most likely config-
urations, based on the assumption that smoothly joining stroke seg-
ments are generally more likely to belong to a continuously drawn
stroke than segments joining at sharp angles. Notice that this step
can be applied independently of the previous steps to improve re-
sults obtained for instance with robust skeletonization or thinning
algorithms.

The algorithmic details of these three phases, from local stroke dis-
ambiguation to topology-aware reconstruction of centerline config-
urations, are described in Section 4. Our results and evaluation in
Section 5 demonstrate that our approach resolves the limitations of
existing techniques and results in high-quality vectorization.

4 Algorithm

4.1 Clustering for Stroke Disambiguation

Pixels pi of a raster input image can be roughly classified into two
categories, depending on their respective image gradient∇i: small
gradients do not carry sufficient information about the stroke cen-
ter, while large gradients provide a more confident guess about the
centerline location. Accordingly, we classify each pixel pi as either
stationary: S = {pi|‖∇i‖ < ε} or moving:M = {pi|‖∇i‖ ≥ ε}
by thresholding the gradient norm. The norm threshold value ε
should be set to be above the gradient levels of the image noise.
All results presented in this paper have been produced with ε equal
to 10% of the maximal gradient length.

The basic idea of our stroke clustering is that confident pixels
pi ∈ M move towards the centerline by following the direction
∇i

1. Although local noise may influence the trajectory of individ-
ual pixels, as long as the gradient noise level is below ε, the pixels
converge and cluster towards the centerline (see Figure 3).

1Gradient directions are kept constant throughout the clustering.

For all pixels pi ∈ M, the motion vector is set to mi = δt∇i,
where δt is a constant speed factor, in our implementation equal to
10% of the width of a pixel. This has two consequences: first, the
pixels move in compact bands, and second, centerlines are located
where the two opposing bands meet. The stopping condition for
each moving pixel is then naturally given by the motion coherence
in its local neighborhood; for each pixel pi ∈M the nearest neigh-
bors Ni = {pj |‖pj − pi‖ ≤ 1} are collected. By looking at the
sign of the dot product of the gradients∇i · ∇j , neighboring pixels
pj ∈ Ni are classified either as belonging to the same band (posi-
tive dot product), or the opposing band (negative dot product). The
stopping condition is then defined as having one or more pixels of
the opposing band that traveled past the location of pixel pi, which
can be expressed as (pj − pi) · ∇i < 0.

The clustering process terminates when the number of moving pix-
els drops below 1% of the initial setM. Outliers, such as remain-
ing background and isolated pixels, can be eliminated by removing
those pixels that remained stationary through the whole clustering
process or that have less then 2 neighbors within a 1-pixel radius.
This clustering procedure results in a contraction of the input pixels
around the approximate location of the stroke centerline.

Notice that at this stage it is possible to get an estimate of the stroke
thickness by considering the distance that boundary pixels traveled.
In our implementation we do not explicitly mark pixels as belong-
ing to the boundary, but rather we store the traveled distance of each
pixel as the approximate local stroke radius ri and take a conserva-
tive estimate by setting it to be the maximum rj of all pj ∈ Ni.
This estimate of the local stroke thickness will be utilized in the
subsequent steps of our algorithm.

4.2 Topology Extraction

We are interested in extracting the topology of the drawing. Af-
ter convergence, the cluster is a point set that densely samples the
proximity of the drawing stroke centerlines. Instead of applying
techniques from geometry reconstruction, we treat this point set as
a graph, and rely on well-known efficient graph algorithms to ex-
tract a skeleton that explicitly contains the topology of the drawing.

The procedure is illustrated in Figure 4. A graph structure (the
cluster graph) is constructed by connecting each clustered pixel
pi to each neighbor pj within the local stroke thickness (see Fig-
ure 4b). A weighted edge eij is added for each pair (pi,pj).
The weight ω(eij) of an edge is simply the Euclidean distance
ω(eij) = D(pi,pj).

The topological skeleton (endpoints, junctions, connectivity) of the
drawing is then computed by topology-preserving coarsening of the
cluster graph (Figure 4b-e). First, a minimum spanning tree (MST)
of the graph is computed [Kleinberg and Tardos 2005]. Due to
the dense pixel clustering, the MST is characterized by a number of
main branches with many very short branches (“twigs”) which con-
tribute to the stroke width/detail, but not ultimately to the topologi-
cal structure we are seeking. In order to isolate the main branches,
the leaves of the MST are iteratively pruned (Figure 4c). To avoid
pruning the entire graph, we keep track of the length of the branches
being removed, and terminate the iteration if deleting an additional
node will make the total length of the removed branch greater than
the local stroke thickness.

By definition, any loop in the drawing will be cut by the global
MST. Figure 4f-k illustrates a procedure to reliably detect and close
these cuts through the construction of a local MST around each leaf
node. Consider the cut produced by the global MST (4f). The leaf
pruning will erode both sides, widening the cut up to approximately
2ri (4g). For each leaf node (4h), we compute local MST (4i) and
then apply leaf pruning (4j). Loop connectivity is restored by taking

4

fa

b c d e

g

h

i

j

k

Figure 4: Topology Extraction and Loop fixing (a). Topology Extraction (b-e). An minimum Spanning Tree (MST) is computed (b). Branches
of length smaller than the stroke thickness are removed (c), resulting in a skeletonized version of the cluster (d) from which the final topology
of the skeleton is extracted (e). Loop Fixing (f-k). For drawings containing loops (a), the MST computation breaks the loop in at least one
location (f). The leaf pruning (g) widens the gap. To restore the link, for each of the remaining leaves (h) a local MST is computed (local
scope: the green circle in a). (i) The local and global MSTs are merged, and remaining leaves pruned (j), ultimately restoring the loop (k).

the union of the global MST and the local ones (4k). Notice that
this procedure will not affect actual end points, as the local MSTs
followed by the leaf pruning will produce the same initial leaf nodes
as the pruned global MST.

We now mention a few implementation details. First, an MST cut
generates two leaf nodes, but it is sufficient to apply the above pro-
cedure to one of the two. Checking if a leaf is still a leaf after each
iteration can save computation time. Second, prior the computation
of the local MST, we zero the weights of the edges that are in the
global MST. This will force the local MST to pick the same edges
and only expand within the gap, avoiding the introduction of tri-
angular structures or undesired loops. Third, in order to account
for variation in our stroke thickness estimate, we set a conservative
range for the local MST of 4ri (green circle in Figure 4a).

The final topological skeleton of the drawing can then be obtained
by collapsing all nodes of valence 2 in the graph. Nodes of va-
lence 1 then correspond to stroke endpoints, nodes of valence ≥ 3
to stroke junctions, and the graph edges represent the topological
stroke segments in the drawing (see Figure 4e).

a b c

Figure 5: Local Ambiguity. A junction (a) and a stroke with vary-
ing thickness (b) cannot be distinguished by considering the local
appearance only (c).

4.3 Centerline Extraction and Reverse Drawing

The main challenge for reconstructing accurate centerline estimates
is ambiguities which cannot be resolved by purely local methods
and hence lead to reconstruction artifacts in existing approaches.
Figure 5 illustrates such an ambiguity where two strokes converge
and cannot be distinguished from a stroke with varying thickness by
considering only a local window. Moreover, even when it is clear
that multiple strokes meet at a junction, one has to choose among a

number of possible configurations (see Figure 6).

In order to address these challenges, our algorithm performs two
steps. First, a set of base centerlines is traced, connecting all end
points and junctions according to the drawing topology. We refer
to the processing up to this point as the base method, as it produces
centerlines which in nature are similar to the results obtained with
prior art (see Figure 18). Second, our reverse drawing procedure
(see Figure 7) utilizes the drawing topology to identify ambigu-
ous regions (e.g., junctions and sharp corners) and then corrects the
centerline estimates by choosing the most likely centerline config-
uration among all possible ones.

4.3.1 Base centerlines

Base centerlines are constructed by computing the source to desti-
nation shortest path on the full cluster graph. As source and des-
tination points we pick the junctions and endpoints defined by the
drawing topology. Hence, each topology edge generates a base cen-
terline. The stroke thickness is derived locally from the selected
path nodes.

Two special cases have to be considered: an edge connecting a
junction to itself (loop) and two junctions connected by more than
one edge. For both special cases, in our implementation we split
the edges adding dummy valence-2 junctions (see red node in Fig-
ure 2c), forcing the shortest path to take the individual necessary
routes.

The extracted shortest paths are then smoothed by applying a data-
driven smoothing operator which moves the path along the local
curve normal towards the center of mass of the clustered stroke
pixels. For each point pi of a centerline path, a Gaussian weighting
function is used to assign weights to the cluster pixels pj in the
neighborhood. The refined position p̃i is then given as

p̃i ← pi + ((ci − pi) · ni)
Tni, with (1)

ci =

∑
j
wjpj∑
j
wj

, and wj = e
−
D(pi,pj)

2σ2 , (2)

5

BC1

BC3BC2

BC1

BC3

CC2

BC2

BC1

CC3

BC3

BC2

BC1

CC1
BC3BC2 BC3

CC1

CC3

BC1

BC2
CC1

BC1

BC3

CC2

BC2

CC3

BC1

BC3

CC2

BC2

CC3

BC1

BC3

CC2

BC2

a c db f ge h

CC1

Figure 6: Junction Configurations. This image shows all possible configurations combining the base centerlines (BCs) and continuous
centerlines (CCs) inside the ambiguous region (black dotted circles). Case ‘h’ is included for completeness, but occurs rarely in practice.

a b c d e hf g

Figure 7: Reverse Drawing. For correct centerline estimation in the proximity of overlapping strokes (e.g., at junctions) (a), our algorithm
first identifies the ambiguous region (b,c) and removes the corresponding centerline estimates (d). From the intersections of the ambiguous
region with the base centerlines (e), continuous candidate centerlines (CCs) are computed (e, f). Then the stroke-curvatures of the CCs are
evaluated (g), and the final centerline configuration is selected (h).

where ni is the normalized approximation of the local curve nor-
mal and σ = ri to adapt the weighting scheme to the local stroke
thickness (Figure 8). We compute approximate vertex normals by
averaging the normals of the adjacent line segments, and then inter-
polate these normals linearly over the segments.

0 1 5

Figure 8: Smoothing. This image shows the result of the smoothing
of centerline paths for 0, 1, and 5 iterations. The movement of
points is marked in blue.

4.3.2 Reverse drawing

An overview of the reverse drawing procedure is illustrated in Fig-
ure 7. The first step consists of identifying ambiguous regions
where strokes overlap.

Ambiguous region estimation: For each junction, we iteratively
grow a circleAR at the junction position until the strokes no longer
overlap. The process is summarized by the steps:

1. Create a circle AR centered at the junction.

2. Intersect AR with each adjacent base centerline BCj .

3. At each intersection, generate a circle Sj of radius equal to
the local stroke thickness (Figure 7b, blue circles).

4. If any pair of Sj intersects, increase the radius of AR and
repeat from 2. Otherwise stop. (Figure 7c).

Continuous centerline construction: Given the ambiguous region
at a junction, the base centerlines inside this region are removed
and replaced by all possible configurations of continuous centerline
candidates (CCs) at that junction (Figure 6b-h). Given the position
and curve tangent of the intersections between the ambiguous re-
gion and a pair of base centerlines, a CC is computed as a cubic
Hermite spline (Figure 7e,f). The normalized curve tangents are
scaled to one third of the distance between the two points.

Stroke-Curvature: When considering the curvature of strokes, we
observe that different stroke thicknesses (Figure 9a,b) result in dif-
ferent perceived curvatures even when the centerline is the same.
As shown in Figure 9c, we define the stroke-curvature α by sam-
pling the stroke centerline at three points with distance r (the local
stroke thickness) and fitting a circle, computing α = 2arcsin

(
r
2c

)
.

() 2 cr

r

c

c

α

β

β

2β + α = π

rα = 2 arcsin. .

c
c

c

r

r

αa b c

Figure 9: Stroke-Curvature. (a) and (b) illustrate the apparent
difference in visual smoothness of strokes with same centerline but
different radii. (c) shows the geometric reconstruction of the stroke-
curvature α from the local stroke radius r and curvature radius c.

To compute the stroke-curvature αi of a continuous centerlineCCi,
we sample CCi uniformly with the sample distance r according to
the local stroke thickness, and then set αi as the maximum stroke-
curvature over the whole curve (see Figure 7g).

Centerline selection: Our goal is to connect the base centerlines
(BCs) around an ambiguous region by either picking continuous
centerlines (CCs) only (e.g., Figure 6f-h), or a combination of
BCs and CCs (e.g., Figure 6b-e).

Figure 10: Examples of valence-4 junctions.

In application contexts where fixed alphabets or specific drawing
patterns are defined, junction classes (T, Y, X, etc) can be asso-
ciated with predefined centerline configurations. However, in line
drawings, the number of such classes is virtually infinite. Figure 10
shows just a few of the many valence-4 junctions that can be found
in line drawings, each one with its own nuances. This makes it
impractical to build a comprehensive classification.

CC
1-4

CC
1-3

CC
2-4

BC1BC1
BC2BC2

BC3BC3
BC4BC4

BC1BC1
BC2BC2

BC3BC3
BC4BC4

BC1BC1
BC2BC2

BC3BC3
BC4BC4

BC1BC1
BC2BC2

BC3BC3
BC4BC4a c db

Figure 11: Centerline Selection. CCs are generated (a), and for
each, the stroke-curvature is computed. AnyCC (dashed) with cur-
vature exceeding the threshold is excluded. Sequentially (b,c,d), the
CCs with the smallest curvature are selected until all BCs are
connected (d).

6

Instead, we opt for a fixed selection scheme that can operate on any
kind of junction (see Algorithm 1). Figure 11 illustrates the major
steps for a valence-4 junction.

Data: A junction with BCs and CCs
Result: A set of accepted BCs and CCs
foreach CCi do

Compute αi;
if αi > t then reject CCi as sharp turn;

end
Put the remaining CCs in a list;
Sort list by ascending αi;
while the list is not empty do

Extract the straightest CCi from the list and accept it;
if all BCs are connected then Terminate;

end
foreach disconnected BCi do

Extend BCi linearly until it crosses any accepted centerline
(either BCi or CCi);
Accept BCi;

end
Algorithm 1: Centerline Selection Scheme.

This selection scheme favors straight centerlines over curved ones.
The stroke-curvature threshold t discriminates acceptable continu-
ous centerlines from undesirable sharp turning connections, which
are usually associated with cases where base centerlines stop at the
junction (Figure 6a-d). In our implementation t is equal to 50◦, an
optimal value according to our empirical validation (see Section 5
and Figure 13).

Spikes: A spike is generally formed by two strokes, drawn in ap-
proximately opposite directions, that overlap in the region of the tip.
Spikes are a special case of valence-3 junctions where one branch
is relatively short. In terms of topology, a junction exists where the
overlap starts, and the tip forms an end point, as illustrated by Fig-
ure 12a. After such a structure is detected in the topology extrac-
tion, the reverse drawing procedure treats it as any other junction
by selecting the straighter CCs, which results in the appropriate
representation of the spike.

ba c

Figure 12: Spikes can be considered a special case of a junction,
where one of the branches is very short (a). (b-c) show respectively
the topology and the resulting centerlines for several spikes.

5 Validation and Results

We evaluate our approach on a variety of clean line drawings, in-
cluding production drawings from 2D short and feature animations
(Figure 17). Of the paper examples, we include recently created
drawings, as well as an archival piece which has degraded in qual-
ity over time and is therefore difficult to vectorize using existing
techniques due to the age-related artifacts in the paper texture. We
provide numerical and visual comparisons to two standard commer-
cial tools, Adobe Live Trace [Adobe 2010] and Harmony [Toon-
Boom 2010], as well as the Stentiford and Zhang-Suen thinning
algorithms (implemented in Wintopo [Sisoft.net 2010]).

Em
pi

ric
al

 M
in

im
um

20 30 40 50 60 70 80
0

5

10

15

20

25

30

Stroke-Curvature Threshold t (degrees)

M
is

cl
as

si
�e

d
CC

s
(%

)

Average (6 drawings) Dracolion Moose

Figure 13: Stroke-Curvature Thresholding. To establish an empir-
ically optimal value of t, we built a data set containing more than
2000 CCs, manually labeled as either smooth or sharp turns. This
image displays the classification obtained with Algorithm 1, plot-
ting percentage of misclassified CCs versus the input threshold
parameter t. For cross-validation, we show the average misclas-
sification for 6 out of the 8 drawings, which suggests an optimal
threshold value t, and finally we assess the quality of the prediction
on the two remaining 2 drawings.

5.1 Evaluation

In order to evaluate the accuracy of our centerline reconstruction
and to compare it to existing methods, we used a data set consisting
of eight drawings (four scanned, four digitally drawn and then ras-
terized). In total, the drawings contain more than a thousand topo-
logically relevant points (59.8% junctions, 40.2% endpoints), and
about two thousand centerlines. For the digitally created images,
accurate ground truth centerlines are available. For the scanned
drawings, we asked an artist to manually trace the centerlines and
highlight the correct topological configuration at junctions. The re-
sults of the evaluation are summarized in Table 1. We evaluate the
following criteria:

Selection Scheme Accuracy (SSA): Algorithm 1 requires as input
a stroke-curvature threshold parameter t. To pick an appropriate
value, we proceeded as follows. For all images in our data set, an
artist manually labeled all candidate centerlines as either smooth
or sharp turns, obtaining a data set with more than 2000 classified
CCs. Then, as illustrated in Figure 13, we evaluated the percent-
age of misclassified CCs against different thresholds t and picked
the empirical optimum at t = 50◦. To validate this choice, we then
performed a leave-one-out cross-validation (repeated for all draw-
ings). On average, our choice produces an optimum prediction error
of 1.99◦, which corresponds to an error of 0.25% in terms of mis-
classified CCs. Overall, with the chosen threshold value t = 50◦,
our algorithm produces results that match the artist’s classification
in 95.5% of the cases. Furthermore, we broke down the values
based on valence. Junctions with valence greater than 3 occurred
less frequently (5.7% of total), and were more difficult to classify
(accuracy 93.4%).

Centerline Error (CE): We evaluate centerline quality by com-
puting the average minimum distance of dense sample points on
the extracted centerlines to the ground truth centerlines (see Fig-
ure 14). The error with our approach has an average of only 4.13%
of the average stroke thickness. We perform the same computation
for Adobe Live Trace, resulting in an average of 7.97%, and for the
base version of our algorithm (where no reverse drawing is applied)
which shows an average error of 5.38%. For the result in the spe-
cific drawings, refer to the second to last column in Table 1. Our
method shows consistent improvements of the centerline quality for
all examples.

Salient Points Error (SPE): Junctions and endpoints are critical
elements in the vectorization of line drawings. The quality of a re-

7

Name Input Image Process SSA CE SPE
Type Res. Time Valence 3 > 3 % Valence > 3 vs. ALT vs. Base vs. ALT vs. Base

Alligator Scan Clean 20482 3m 10s 95.3% 88.8% 1.6% 176 % 125 % 159 % 138 %
Dracolion Digital 10242 29s 95.5% 100% 2.2% 279 % 177 % 145 % 144 %
Dr Facilier Scan Clean 10242 46s 96.0% 75.0% 4.8% 168 % 120 % 181 % 157 %

Father Scan Rough 20482 3m 50s 97.4% 97.4% 9.5% 186 % 140 % 270 % 156 %
Moose Scan Digital 20482 3m 27s 98.6% 98.6% 8.2% 140 % 106 % 168 % 134 %
Mouse Digital 10242 1m 1s 95.8% 90.9% 8.0% 355 % 158 % 136 % 113 %
Muten Digital 10242 24s 96.0% N/A 0% 212 % 125 % 379 % 288 %
Sheriff Digital 10242 55s 94.5% 94.5% 19.8% 187 % 123 % 145 % 115 %

Table 1: Numerical results and ground truth evaluation for different input drawings. See Section 5 for a detailed discussion (ALT: Adobe
Live Trace, Base: base version of our algorithm, where no reverse drawing is applied).

Our Method Base Method Live Trace

alligator dracolion facilier father moose mouse muten sheriff
0%
2%
4%
6%
8%

10%
12%
14%
16%
18%

Ce
nt

er
lin

e
Er

ro
r

Figure 14: Centerline Error. This image shows a comparison of
the centerline error for the results obtained with Adobe Live Trace,
our method, and the base version of our method, where no reverse
drawing is applied. The values are expressed as percentage of the
average stroke thickness in each drawing. Our method consistently
produces a better score.

construction can be assessed by considering both the correctness in
the placement of these points as well as the correctness in the over-
all topology. Given a drawing, consider two sets of salient points
G and M , from the ground truth and the method to be evaluated
respectively. We then compute:

D =
∑
i∈M

min
j∈G

dist(i, j) +
∑
j∈G

min
i∈M

dist(i, j) (3)

A good reconstruction should produce a set M that is as similar
as possible to G. In the case of correct topology, the contribution
of a pair (i ∈ M, j ∈ G) will express the quality of the salient
point placement. However, if a method does not capture the correct
topology (by either missing a junction or detecting more junctions
than there actually are) mismatched pairs will penalize the score
with additional accumulated distance. Figure 15 shows the com-
parison of our method with Adobe Live Trace and the base version
of our method. To assess the performance across our data set, we
normalized the values D considering twice the number of salient
points 2 · |G| in each drawing.

5.2 Input Resolution and Clustering Robustness

The clustering step described in Section 4.1 samples the input im-
age to generate bands of moving pixels that stop when they meet.
We experimented with super-sampling as a way to cope with very
low input resolutions. Even 1-pixel wide strokes, if super-sampled
appropriately with a smooth filter (in our tests: bi-cubic filter, 4
samples per pixel), can be reconstructed accurately, leading to ro-
bustness comparable to competing approaches.

As shown in Figure 16, the centerline error relative to the ground
truth (logarithmic scale) drops exponentially with increasing res-
olutions. Differences between our method and Adobe Live Trace
become more evident at higher resolutions.

Our Method Base Method Live Trace

0%

50%

100%

150%

200%

250%

alligator dracolion facilier father moose mouse muten sheriff

Figure 15: Salient Points Error. This image shows a comparison
of the salient points error for the results obtained with Adobe Live
Trace, our method, and the base version of our method, where no
reverse drawing is applied. The values are expressed as percent-
age of the average stroke thickness in each drawing. Our method
consistently produces a better score.

0.125

0.25

0.5

1

2

4

8

16

1024512256128

Ce
nt

er
lin

e
Er

ro
r (

px
)

Image Width (px)

Dracolion Father Facilier Live Trace Our Method

Figure 16: Effect of increasing the input resolution. Both our
method and Adobe Live Trace (dashed) exhibit an exponential re-
duction of the error. Differences between the two methods become
more evident at higher resolutions.

5.3 Result Images

For a general overview of the capabilities of our method, we present
a selection of vectorization results in Figure 17, taken from the eight
drawings used in the previous section for error evaluation. Notice
how several ambiguous regions are properly handled, and in most
cases the proper junction configuration is selected. These results
combine the advantages of both the pixel clustering and the reverse
drawing.

Figure 18 illustrates the benefits of pixel clustering on its own. Fig-
ure 18a,b show the vectorization results obtained with Adobe Live
Trace and Sisoft Wintopo. Figure 18c shows results from only the
base portion of our algorithm, where centerlines are traced from
the pixel clusters, but no reverse drawing is applied. Notice how
both medial axis and thinning methods (a,b) rely on the creation of
boundaries, usually obtained through color thresholding. However,

8

Moose Mouse Sheri� Muten

Dr. Facilier Alligator Dracolion Father

© Disney Enterprises, Inc.

© Disney Enterprises, Inc. © Disney Enterprises, Inc. © Disney Enterprises, Inc.

Figure 17: Collection of vectorization results generated with our method. The Father image is not fully clean (the paper quality is degraded
and lines not sharp), and thus represents a borderline case.

with low thresholds, nearby strokes are not distinguished properly,
and with high values parts of the drawings are lost. Pre-sharpening
the images can alleviate these problems, but the proper kernel size
has to be used; in our experiments, this approach required manual
tuning to achieve good results. In contrast, our method successfully
separates nearby strokes, while avoiding stroke losses.

Finally, Figure 19 provides visual comparisons of our complete
method to leading commercial vectorization implementations, Toon
Boom Harmony [ToonBoom 2010], Adobe Live Trace [Adobe
2010], and SoftSoft Wintopo, respectively. Notice how the exist-
ing techniques have difficulties in discriminating nearby strokes,
which results in merged centerlines for separate strokes and an in-
correct drawing topology. Moreover, junction points are placed at
inaccurate positions. Our method finds a more natural placement.
For these comparisons, we attempted to tune the parameters of the
software packages to obtain the best possible results. Our method
uses the standard parameter values described in the previous sec-
tions and requires no per-drawing tuning.

5.4 Processing Time

The processing time of our method for each of the input images
is provided in Table 1, measured on a desktop PC2. The time nec-
essary to process an image depends both on its resolution as well
as the number of strokes and junctions. Due to the more complex
topological analysis of a drawing, our algorithm requires more pro-
cessing time than tools such as Live Trace or Harmony. However,
the timings are still in the range of only a few seconds to minutes,
and the necessary time spent in post-production to correct the cen-
terline estimates and junctions is significantly reduced compared to
the previously available solutions (see Figure 20).

For the Alligator example (Figure 17), we compared the timing of
manual post-processing of the output to fix erroneous junctions for
Live Trace and our method: it took an artist 12 times longer to
produce comparable results for the Live Trace example.

2Mac Pro, Quad-Core 2.66 GHz, 4GB RAM

a b c

Figure 21: Limitations. With the current method, small details (a)
may not be captured by the topology extraction. The method is also
not designed to work with solid areas (b). (c) The linear extension
of the base centerlines does not always produce the best junction
location (higher order extrapolation shown in blue).

5.5 Limitations and Future Work

An important application for this system is 2D animation. As is, our
system can be used in tandem with inbetweening techniques, such
as [Whited et al. 2010]. However, the vectorization quality could be
improved by considering the information contained in subsequent
frames, improving the decision making (Algorithm 1) and recover-
ing from errors in the topology. The difficulty however is that dis-
tinct elements moving independently may drastically change both
the topology and the junction configurations, making these exten-
sions very challenging.

As for any raster based method, image quantization and noise play
a crucial role. In the case of low resolution input, details are hard to
extract (Figure 21a). In our tests with variable resolution (see Fig-
ure 16) we observed a similar response for our method and Adobe
Live Trace, but in order to not break - i.e. have enough moving pix-
els - the proposed pixel clustering requires super-sampling. Noise
may lead to strokes being torn apart. Additionally, we observe in
Figure 16 the decay of the improvement rate as the resolution in-
creases. This is partly due to the error getting closer to zero, but
also to the difficulty in exploiting the additional information.

While Algorithm 1 in most cases produces good results, there may
be cases of technical drawings, with grid structures or specific
texture-like patterns, where a failure of the algorithm appears in

9

many junctions, making manual fixing very time consuming. Here,
a possible approach would be to apply machine learning to up-
date the guiding criteria. The current spike detection relies on the
presence of particular topological structures, and might also be im-
proved by using machine learning in conjunction with the proposed
stroke-curvature measure to be able to explicitly extract sharp cor-
ners.

Finally there are some minor limitations. As shown in Figure 21b,
our method is not designed to work with solid areas. Additionally,
as explained in Section 4.3, base centerlines that are selected by
Algorithm 1 for the final configuration are extended linearly inside
the ambiguous regions. Figure 21c shows a case where this lin-
ear method results in a less accurate junction location than the one
obtained with higher order extrapolation.

6 Conclusion

We have described a novel vectorization technique for clean line
drawings which produces a high-quality representation suitable for
vector processing. Our approach consists of two techniques: a gra-
dient based pixel clustering that helps disambiguate difficult cases,
and a reverse drawing procedure which exploits the drawing topol-
ogy to make educated choices when dealing with junctions. Since
these techniques are independent, the reverse drawing can be ap-
plied to improve the result of existing techniques that provide the
drawing topology.

We have demonstrated the application of our method to a variety
of professional examples. Our results show how our approach im-
proves the vectorization of junctions and nearby strokes which rep-
resent the major shortcomings of state-of-the-art solutions when it
comes to clean line drawings. Such accurate junction and centerline
recovery makes stroke-based editing operations such as automatic
inbetweening more feasible in a digital pipeline.

Possible future directions include addressing the limitations of the
current method by exploring the vectorization of more sketchy and
noisy drawings, considering image pre-filtering using LoG [Chen
et al. 1987]. Moreover, we are interested in studying the semantic
information present in sketchy drawings, considering strokes not
only as sets of pixels, but as objects with mathematical properties
(e.g., trajectory, direction) with the goal of exploiting such seman-
tics in a clustering approach.

References

ADOBE, 2010. Illustrator. http://www.adobe.com/.

BARTOLO, A., CAMILLERI, K. P., FABRI, S. G., BORG, J. C.,
AND FARRUGIA, P. J. 2007. Scribbles to vectors: preparation
of scribble drawings for CAD interpretation. In SBIM, 123–130.

CHANG, H.-H., AND YAN, H. 1998. Vectorization of hand-
drawn image using piecewise cubic bézier curves fitting. Pattern
Recognition 31, 11, 1747–1755.

CHEN, J. S., HUERTAS, A., AND MEDIONI, G. 1987. Fast con-
volution with laplacian-of-gaussian masks. IEEE Trans. Pattern
Anal. Mach. Intell. 9 (July), 584–590.

CORNEA, N. D., SILVER, D., AND MIN, P. 2007. Curve-skeleton
properties, applications, and algorithms. IEEE Trans. Vis. Com-
put. Graph. 13, 3, 530–548.

FREEMAN, H. 1974. Computer processing of line-drawing images.
ACM Comput. Surv. 6, 1, 57–97.

HILAIRE, X., AND TOMBRE, K. 2006. Robust and accurate vec-
torization of line drawings. IEEE Trans. Pattern Anal. Mach.
Intell. 28, 6, 890–904.

JANSSEN, R. D. T., AND VOSSEPOEL, A. M. 1997. Adaptive vec-
torization of line drawing images. Computer Vision and Image
Understanding 65, 1, 38–56.

KIRBAS, C., AND QUEK, F. K. H. 2000. A review of vessel
extraction techniques and algorithms. ACM Computing Surveys
36, 81–121.

KLEINBERG, J., AND TARDOS, E. 2005. Algorithm Design.
Addison-Wesley Longman Publishing Co., Inc.

LAKSHMI, J. K., AND PUNITHAVALLI, M. 2009. A survey on
skeletons in digital image processing. In Proceedings of the
International Conference on Digital Image Processing, IEEE
Computer Society, Washington, DC, USA, 260–269.

LAM, L., LEE, S.-W., AND SUEN, C. Y. 1992. Thinning method-
ologies - a comprehensive survey. IEEE Trans. Pattern Anal.
Mach. Intell. 14, 9, 869–885.

LECOT, G., AND LÉVY, B. 2006. ARDECO: Automatic Region
DEtection and COnversion. In EGSR’06, 349–360.

LIU, W., AND DORI, D. 1998. A survey of non-thinning based
vectorization methods. In SSPR/SPR, 230–241.

ORZAN, A., BOUSSEAU, A., WINNEMÖLLER, H., BARLA, P.,
THOLLOT, J., AND SALESIN, D. 2008. Diffusion curves: a
vector representation for smooth-shaded images. ACM Trans.
Graph. 27, 3.

SISOFT.NET, 2010. Wintopo. http://wintopo.com/.

SUN, J., LIANG, L., WEN, F., AND SHUM, H.-Y. 2007. Im-
age vectorization using optimized gradient meshes. ACM Trans.
Graph. 26, 3, 11.

SÝKORA, D., BURIÁNEK, J., AND ŽÁRA, J. 2005. Video codec
for classical cartoon animations with hardware accelerated play-
back. In Proceedings of International Symposium on Visual
Computing, 43–50.

TOONBOOM, 2010. Harmony. http://www.toonboom.com/.

WHITED, B., ROSSIGNAC, J., SLABAUGH, G., FANG, T., AND
UNAL, G. 2009. Pearling: Stroke segmentation with crusted
pearl strings. Pattern Recognition and Image Analysis 19, 2 (06),
277–283.

WHITED, B., NORIS, G., SIMMONS, M., SUMNER, R. W.,
GROSS, M., AND ROSSIGNAC, J. 2010. BetweenIT: An in-
teractive tool for tight inbetweening. Computer Graphics Forum
(Eurographics 2010 Proceedings) 29, 2.

XIA, T., LIAO, B., AND YU, Y. 2009. Patch-based image vec-
torization with automatic curvilinear feature alignment. ACM
Trans. Graph. 28, 5, 1–10.

ZHANG, S.-H., CHEN, T., ZHANG, Y.-F., HU, S.-M., AND
MARTIN, R. R. 2009. Vectorizing cartoon animations. IEEE
Trans. Vis. Comput. Graph. 15, 4, 618–629.

ZOU, J. J., AND YAN, H. 2001. Cartoon image vectorization based
on shape subdivision. In Computer Graphics International, 225–
231.

10

High Low High Low

Base MethodAdobe Live Trace Sisoft Wintopoa b c

Figure 18: Pixel Clustering Comparison. This image shows a comparison between Adobe Live Trace (a), Sisoft Wintopo (b), and the result
of our base algorithm (c), where only the base centerlines have been extracted, and no reverse drawing has been applied. In (a) and (b)
different color threshold parameters have been used. Notice how in order to get the nearby strokes separated, the color threshold must be set
to high values, losing other parts of the drawing. Our method successfully separates the strokes without such losses.

a b c d e

Figure 19: General Comparison. This image shows close-up comparison between Adobe Live Trace (a), SiftSoft Wintopo (b), Toon Boom
Harmony (c), our method (d), and the ground truth (e).

...

...

d ec

f

g

1st 2nd 3rd 4th 5th

5th1st 2nd 3rd 4th

a

b

Figure 20: System output (a). With a user interaction of only a few seconds per junction, different configurations can be obtained (b). The
interaction steps are shown in (c-g). First, the user selects the junction (c), and activates the editing mode (d). BCs entry points (yellow
dots) are used by the user to make the desired changes. Once an entry point is clicked (e), the system shows a set of valid configurations to
choose from (f). The first criterion is that the entry point must be connected: 1 connection is favored over 2, 2 over 3, etc. Straighter CCs
are the first choice, then linearly prolonged BBs, and finally, rejected CCs. If a choice influences the connectivity of another entry point, that
point is automatically selected, and possible configurations displayed (g). Previous choices are marked in black. This process requires at
most one choice per entry point.

