
IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 1

Ball-morph: Definition, Implementation and
Comparative Evaluation

Brian Whited and Jarek Rossignac

(Invited Paper)

Abstract—We define b-compatibility for planar curves and propose three ball morphing techniques between pairs of b-
compatible curves. Ball-morphs use the automatic ball-map correspondence, proposed by Chazal et al. [1], from which we derive
different vertex trajectories (linear, circular, parabolic). All three morphs are symmetric, meeting both curves with the same angle, which
is a right angle for the circular and parabolic. We provide simple constructions for these ball-morphs and compare them to each other
and to other simple morphs (linear-interpolation, closest-projection, curvature-interpolation, laplace-blending, heat-propagation) using
six cost measures (travel-distance, distortion, stretch, local acceleration, average squared mean curvature, and maximum squared
mean curvature). The results depend heavily on the input curves. Nevertheless, we found that the linear ball-morph has consistently
the shortest travel-distance and that the circular ball-morph has the least amount of distortion.

Index Terms—Morphing, Curve Interpolation, Medial Axis, Curve Averaging, Surface Reconstruction from Slices, Ball-map

✦

1 INTRODUCTION

The animation of a planar curve may be specified by
drawing the shape of the curve at specific time values.
These drawings are called key-frames or simply keys.
Then, the problem is one of constructing an animation
that continuously deforms the curve from one key to
the next, while respecting the timing provided. Each
segment of the animation between two consecutive keys
is a morph and may be addressed independently, if one
does not have to enforce derivative continuity across the
keys. We explore here a new formulation of such morphs
and their automatic construction and animation.

1.1 Problem statement

A variety of techniques have been proposed for comput-
ing automatically a morph between two curves P and Q
in the plane (see [2] and [3] for examples). In this paper,
we present a new family of three related morphs, which
we call the ball-morphs, and discuss two related issues:
(1) How to compare different morphing solutions and
(2) How do the ball-morphs introduced here compare to
each other and to other morphing approaches.

1.2 Motivation and applications

Morphing is a fundamental tool in animation de-
sign where in-between [4] frames are produced from a
sparse set of key-frames that are often designed by
lead artists [5]. Although several successful attempts
at automating the construction of in-between frames

• B. Whited is with Walt Disney Animation Studios, Burbank, CA, 91506.
E-mail: brian.whited@disney.com

• J. Rossignac is with Georgia Institute of Technology, Atlanta, GA, 30332.
E-mail: jarek@cc.gatech.edu

Fig. 1. A morph between an apple and pear along
circular ball-morph trajectories (top left).

have been proposed [6], the artist responsible for in-
betweening like to have control over correspondence and
over the trajectories for selected landmarks or stroke
end-points. These specifications are difficult to auto-
mate because they involve aesthetic judgement, style
guidelines, and context semantics about the relative 3D
motions of the strokes and their mutual occlusions.

Once these matching and control trajectories are given,
the overall problem is naturally broken into a series
of tight in-betweening tasks [7] [8]. These are viewed
as tedious and hence are a prime candidate for artist-
supervised automation. In most of such tight in-between
tasks, the goal is to generate intermediate frames be-
tween two reasonably simple and similar curve seg-
ments.

The help the artist select the inbetween technique
best suited to a particular need, we show and com-
pare several of these techniques to better assess the
strength of each. This paper is a modest–although we

0000–0000/00/$00.00 c� 2010 IEEE Published by the IEEE Computer Society

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2

hope useful–step in this direction. It may not be the
final answer to tight in-betweening for several reasons:
(1) The quantitative measures that we use may not
reflect artistic concerns. (2) For practical reasons, we
compare the proposed ball-morphs to our simple and un-
optimized implementations of candidate techniques, and
not to state-of-the-art solutions. More effective imple-
mentations of these competing approaches may exist.
(3) We do not take into account the broader context of
the whole animation, but instead focus on interpolating
only the instances of the same stroke in two consecutive
key-frames. Nevertheless, we hope that the experiments
described here are useful and that the conclusions we
draw from them about the specific benefits of the ball-
morphs will help the reader appreciate their potential.

Furthermore, the problem (encountered in the seg-
mentation of medical scans) of constructing a surface
in 3D that interpolates between each pair of con-
secutive planar cross-sections may be solved [9] us-
ing the morphing between the projection, onto the
same plane, of the two cross-section curves. This prob-
lem of surface reconstruction has been studied ex-
tensively [10][11][12][13][14]. Hence, we have included
quality measures of the resulting surface in our set of
metrics. As it was the case for tight in-betweening, our
investigation of the benefit of ball-morphs to the prob-
lem of cross-section interpolation has limitations. For
example, it only considers two consecutive slices, instead
of building a smooth surface through the whole series,
as proposed in [15]. However, because the circular ball-
morph reaches the interpolated contours at right angles,
the projection of these trajectories on the slice plane is
C1. We expect that this property may help researchers
devise solutions that smoothly connect surface sections
generated by ball-morphs. Furthermore, the approach is
limited to b-compatible curves and hence is not suited
for dealing with topological changes, as discussed for
example in [16].

In these applications, the quality of the morph is
important as one typically favors a solution where the
animation or interpolating surface is smooth and free
from self-intersections [17] and of unnecessary distor-
tions. We show that when the curves are b-compatible,
the ball-morph always satisfies these properties.

1.3 Contributions

We propose a family of three new morphing techniques
(that we call ball-morphs) for which the correspondence
and the vertex trajectories are both derived from the
maximal disks and their tangential contact points with
the curves.

We propose six cost measures for comparing morphs:
travel-distance, distortion, stretch, local acceleration, average
squared mean curvature, and maximum squared mean cur-
vature.

We use these measures to compare the three ball-
morphs to each other and also to a benchmark of five

Fig. 2. Maximal disks (left) and medial axis (right) with
bifurcation disks shown in green

simple morphing techniques which we have imple-
mented; linear-interpolation, closest-projection, curvature-
interpolation, laplace-blending, heat-propagation.

1.4 Limitation

Our ball-morph constructions assume that the two curves
have been registered and are sufficiently similar. We
provide a formal definition of compatibility that captures
these assumptions for the two situations considered here:

1) P and Q are each a simple closed loop.
2) P and Q are open curve segments and share the

same two end-points.
Loosely speaking, our compatibility conditions require
that each maximal disk [18] in the finite region bounded
by the union of the two curves have exactly one contact
point with each curve (see Fig. 2). Note that curves
with concave sharp features relative to the symmetric
difference of their interior are not b-compatible due to this
condition.

Where P and Q are similar but not properly regis-
tered, one may consider combining a ball-morph with
the animation of a rigid or non-rigid registration [19]
or of a smooth space warp [20], as was done with
other morphs for morphing images [21] and for tight-
inbetweening [8]. Numerous solutions to the automatic
registration problem have been proposed using ICP [22],
automatically identified landmarks [23] [24] [25], or dis-
tortion minimizing parameterization [26] [27].

1.5 Structure of the paper

Section 2 briefly reviews prior art in curve morphing and
slice interpolation. Section 3 provides a precise definition
of b-compatibility and contrasts it with a previously pro-
posed notion of normal compatibility. Section 4 presents
our three ball-morphs and compares them to morphs
obtained using closest projection and linear trajectories.
Section 6 defines our six cost measures and explains
our strategy for sampling and for a fair integration of
these measures over the set of all trajectories. Section 8
discusses our results.

2 PRIOR ART

A large variety of techniques have been investigated
for the automatic generation of in-betweening frames or
animations that morph between two planar curves.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 3

We only discuss techniques that are appropriate to the
tight in-betweening problem addressed here. Hence, we
do not discuss complementary techniques for registra-
tion or landmark (salient feature) identification.

First, we review techniques that assume that the corre-
spondence between curve samples (or vertices of polyg-
onal approximations of the curves) on both curves is
either given by the artist or computed automatically dur-
ing preprocessing using, for example, uniform geodesic
sampling, minimization of area or travel [13], curvature-
sensitive sampling [28], or optimization of matching to
affine transformations [29].

If the correspondence is given, the simplest approach
is to use a linear interpolation between corresponding
pairs. Linear trajectories are computed between these
pairs of points on P and Q in order to produce polygonal
approximations of the evolving curve, the vertices of
which move with time t as vi = pi + t(qi − pi). We
refer to this solution as the linear-interpolation.

This naı̈ve approach may lead to unpleasant artifacts,
such as self-intersections in the intermediate frames
(as, for example, pointed out by [30]). The linear-
interpolation is oblivious to the relative orientation and
curvature of the curves at the corresponding points.

To take the orientation and curvatures of both curves
into account, a popular morphing technique proposed
by [31] for polygonal curves interpolates the lengths
of corresponding edges and the angles at correspond-
ing vertices and uses optimization to ensure that the
curve closes properly. We include a simple version of
this approach, which we call curvature-interpolation in
our benchmark set. When it is applied to open curve
segments, we ensure that the interpolating frames meet,
throughout the morph, at their two endpoints by
retrofitting them through a trivial similarity transforma-
tion (rotation, scaling, and translation).

A different approach that takes into account the rela-
tive orientation and curvature of the two curves at the
corresponding samples is to compute the local coordi-
nates of each vertex in the coordinate system defined
by its neighbors on each curve. Then, the corresponding
local coordinates are averaged linearly to produce a
desired set of local coordinates for a given frame. Iterative
techniques may be used to construct a curve that satisfies
the two endpoint constraints and minimizes the discrep-
ancy between the actual and desired local coordinates.
Variations of these techniques have been successfully
used [32][33][34]. We include a simple version of this ap-
proach, which we call laplace-blending, in our benchmark
set.

Vertex trajectories and correspondences may also be
obtained by solving a PDE or by computing a gradient
field that interpolates the two contours and then fol-
lowing the steepest gradient to obtain the trajectory of
each point. Equivalently, the in-between frames may be
obtained as iso-contours of that field. A heat propagation
formulation may be used to characterize the desired
field [35]. We include a simple version of this approach,

Fig. 3. Example Minkowski morphs between convex (left)
and non-convex (right) shapes.

which we call heat-propagation, in our benchmark set.
Several approaches for morphing closed curves use

compatible triangulations [36] of their interior [37][38][3]
or compatible skeletons to ensure rigidity [39][40]. Other
approaches blend distance fields to both shapes [41][14].

Now, instead of relying on the global optimization or
feature recognition techniques discussed above, let us
focus on techniques that define an explicit geometric
formulation of the correspondence. We separate them
into three categories: (1) proximity-based, (2) orientation-
based, and (3) both proximity-and-orientation-based.

The most popular distance-based approach is the clos-
est point projection, which to each point p on P maps a
point q on Q that minimizes the distance to p. Variations
of this approach are used for Iterative Closest Point
(ICP) registration [42]. We include a simple version of
this approach, which we call closest-projection in our
benchmark set.

The simplest orientation-based approach is the
Minkowski morph [43] and yields satisfying results for
convex shapes (see Fig. 3 left), even when the shapes are
not aligned. For smooth curves, the approach establishes
a correspondence between points with the same normal.
Unfortunately, as shown in Fig. 3 (right), the approach
may yield surprising, sometimes self-intersecting frames
when the two curves are not convex. Hence, we do not
include it in our benchmark.

The ball-map [1], upon which the ball-morphs proposed
here are based, takes into account both proximity and
orientation.

3 COMPATIBILITY

3.1 Terminology and notation

Let us start by defining our terminology and notation.
Let P and Q be manifold curves in the plane. Recall that

a manifold curve is free from self-intersections. When a
curve is homeomorphic to a line segment, we call it a
stroke. When it is homeomorphic to a circle, we call it
a loop. We say that curves P and Q are disjoint, when
their intersection is empty. We say that they overlap when
their intersection contains at least one one-dimensional
component. We say that they cross if they are not disjoint
and do not overlap. We say that strokes P and Q
are quasi-disjoint when they only intersect at their two
endpoints.

Let S and T be arbitrary point sets in the plane. Let !S
denote the complement of S. We use the notation S.i, S.b,

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 4

and S.c to refer to the topological interior, boundary and
closure of S. The notation S.e refers to the topological
exterior, defined as S.e =!S.c. A set is regularized [44]
when (S.i).c = S. A set S is finite when there exists a disk
of finite radius containing it. Let S ∪ T denote their set-
theoretic union, S ∩ T their intersection, and S − T their
difference. Let S ⊕ T denote their symmetric difference
(XOR), defined as (S ∪ T)− (S ∩ T).

Consider a one-dimensional subset B of the plane.
We say that B is a border when there exists a finite
regularized set S such that B = S.b. Note that, in that
case, S is unique. When P and Q are loops, each one
is a border, but the union of two loops needs not be a
border (Fig. 4).

Fig. 4. Even when the union (right) of overlapping loops
P (blue) and Q (blue drawn over orange) is not a border,
we define their gap (green).

We define the inside i(B) of a border B as the interior
S.i of the finite regularized set S such that B = S.b.
Similarly, we define the outside o(B) of a border B as
the exterior (i(B)).e of the inside of B. Note that i(B)
and o(B) are topologically open sets. To test whether
a point p that is not on B lies in i(B), shoot a ray R
(see black arrows in Fig. 9 from p that does not intersect
any non-manifold point of B and is not tangent to B
anywhere. If R crosses B an odd number of times, then
p is in i(B). Otherwise it is in o(B).

Given a closed and regularized [44] set S, follow-
ing [18], we say that a disk in S is maximal if it is not
contained in any other disk in S and we define the medial
axis as the closure of the union of the centers of maximal
disks in S.

3.2 Topological validity

The set of valid configurations for which the ball-
morphs can be computed has both topological and mor-
phological limitations. In this subsection, we address the
topological ones. First we present two general restric-
tions and one simplification.

We orient each curve and ensure that the orientations
are compatible. For example, each loop is given a clock-
wise orientation and the strokes are oriented to have the
same starting point. A configuration is invalid when P
and Q overlap and have opposite orientations along any
portion of the overlap.

When P and Q overlap with compatible orientations,
we simplify the validity discussion by removing the
overlap segments (except for their endpoints) and by
identifying components of the remaining part as match-
ing pairs of separate strokes. During the morph, the
overlap segments remain static, hence we need not
worry about them anymore. Each stroke of P shares its

endpoints with a corresponding stroke of Q. We discuss
below the morph of a pair of such strokes. From this
point throughout the paper, we assume that we have
identified and separated the overlap portions and hence
that P and Q are not overlapping.

Finally, to avoid further complications, when P and Q
are strokes with common endpoints, we require that the
oriented loop obtained by combining P with reversed Q
(Q for which we have reversed the orientation) has wind-
ing number (total number of turns made by the tangent
vector as one traverses the loop) equal to one. Hence,
configurations such as those in Fig. 5 are excluded.

Fig. 5. Invalid configurations with winding number greater
than one.

The two restrictions (on reverse orientation overlap
and on winding number) and the simplification (re-
move overlaps) discussed here reduce the number of
topological configurations to be discussed. Amongst the
remaining ones, only four are valid. We define and
illustrate them below.

Configuration 1: P and Q are disjoint loops and the
intersection i(P ∩Q) of their insides is not empty (Fig. 6).

Fig. 6. Valid configuration 1: Disjoint loops with overlap-
ping insides.

Configuration 2: P and Q are quasi-disjoint strokes
(disjoint except for their shared endpoints) (Fig 7).

Fig. 7. Valid configuration 2: Quasi-disjoint strokes, with
common endpoints

Configuration 3: P and Q are crossing loops and the
intersection i(P)∩ i(Q) of their insides has a single non-
empty connected component (Fig. 8).

Configuration 4: P and Q are crossing strokes (Fig. 9)
and the outside o(P ∪Q) of their union is connected.

Note that we can decompose configurations 3 and 4
into one or more instances of configurations 2. In general,
such a decomposition of P and Q into quasi-disjoint
strokes may not be desired, since it imposes artificial
constraints, forcing the evolving curves to interpolate

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 5

Fig. 8. Valid configuration of crossing loops (left) and
invalid configuration (right) where i(P) ∩ i(Q) has two
connected components (red).

Fig. 9. Valid configuration of crossing strokes (left) and
an invalid one (right) in which o(P ∪Q), which is an open
set, has three disjoint components, two of which are finite
and are identified by outgoing black arrows which cross
the union of the two curves an even number of times.

the points where P and Q intersect. Several of the
morphing techniques discussed here (ball-morphs, heat-
propagation, and closest-projection) naturally interpolate
these intersection points anyway, hence the proposed
decomposition does not alter their result. Other tech-
niques, such as the linear-interpolation and curvature-
interpolation, do not necessarily interpolate intersection
points. These morphs are however highly dependent
on the correspondence (parameterization map) between
the two curves, which must be defined by the artist or
computed independently. Furthermore, the techniques
that interpolate intersection points may be combined
with preprocessing steps that identify and match salient
points, split each curve at these points, and execute a
composite morphing of the of the corresponding pairs
of strokes with a carrier (rigid, spiral or affine) motion
that preserves coincidence of their endpoints [8]. Since
we limit our attention to the comparison of morphing
techniques, and not of techniques for computing corre-
spondence, matching, and carrier motions, we force all
morphs to interpolate the intersection points.

Hence, from now on, we only consider configurations
1 and 2.

3.3 Morphological validity

In this subsection, we define additional morphological
validity constraints for the topologically valid configu-
rations (1 and 2) listed above.

We use the notion of gap and its medial axis to define
these constraints.

When P and Q are disjoint loops in configuration 1,
their gap G(P,Q) is defined as the symmetric difference
i(P) ⊕ i(Q) of their insides. When P and Q are quasi-
disjoint strokes in configuration 2, their gap G(P,Q) is
defined as the inside i(P ∪Q) of their union. Note that
the gap is a connected open set.

For topological configure 1, we require that the medial
axis of the gap G(P,Q) be a loop. Figure 10 shows a
geometrically valid and a geometrically invalid configu-
ration 1.

Fig. 10. Geometrically valid configurations (left) and
invalid ones (right), with bifurcations of the medial axis,
are shown for disjoint loops (top) and for quasi-disjoint
strokes (bottom).

For topologically configuration 2, we require that the
medial axis of the gap G(P,Q) be a strokes with the
same endpoints as P and Q. This additional precision is
necessary to exclude situations such as the one depicted
in Figure 11.

Fig. 11. The medial axis of a morphologically invalid
configuration does not join the two endpoints of P and
Q, which are concave vertices of the gap.

3.4 Definition and extension of ball-compatibility
The concept of ball-compatibility (abbreviated b-
compatibility) has been introduced in [1] for two smooth
loops. We say that loops P and Q are b-compatible when
for every point p of P there exists a disk D in the
gap G(P,Q) that is tangent to P at p, that does not
intersect P anywhere else, and that is tangent to Q at a
single point q.

Note that the topological and morphological va-
lidity conditions presented above for loops imply b-
compatibility.

When two curves are b-compatible, each can be ex-
pressed as the ball-offset of the other, i.e., as a portion
of the envelope swept by a variable radius disk as it
rolls on the other curve (Fig. 12 bottom).

Our topological and morphological constraints extend
this notion of b-compatibility from loops to strokes.

3.5 Comparison with c-compatibility

The topological and morphological validity conditions
discussed above may appear as a strong limitation of

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 6

the set of configurations to which the ball-morph may be
applied. In this subsection, we dispel this perception by
comparing them to conditions required by the popular
closest-projection-morph.

The closest-projection of a point m onto a curve P
is a set of points p ∈ P for which distance(m,p) =
distance(m, P).

P and Q are c-compatible (i.e., closest-projection com-
patible) when every point of P or Q has a single closest
projection on the other curve. Figure 13 shows a con-
figuration where P and Q are b-compatible but not c-
compatible.

Sufficient conditions for b-compatibility and c-
compatibility have been discussed in [45], [46] and [1]:
P and Q are b-compatible if H(P,Q) < f and c-
compatible when H(P,Q) < cf , where H(P,Q) denotes
the Hausdorff distance [47] between P and Q, f is
the smallest of their minimum feature sizes [48], and
c = 2 −

�
(2) ≈ 0.5858. Note that a significant set of

configurations satisfy the condition for b-compatibility,
but not for c-compatibility. Hence, we argue that b-
compatibility conditions are in fact less restrictive than
the c-compatibility ones.

4 Ball-morphs
In this section, we describe the correspondence used
for our ball-morphs and present the various options for
ball-morph trajectories between corresponding pairs of
points. The definitions are independent of the nature
of the two curves and of their representation. We have
implemented these techniques for two domains: (1)
smooth (C1) piecewise circular curves (PCCs) [49], and
(2) relatively smooth polygons (such as those obtained
through smoothing or subdivision). Our implementa-
tion on pairs of b-compatible piecewise-circular curves is
numerically precise and yields the theoretically correct
ball-morph. Clearly, the implementation for polygons is
not theoretically correct. Indeed, the polygonized ver-
sions of two b-compatible curves are not b-compatible,
because the region they bound must have convex ver-
tices and hence bifurcations in its medial axis. Nev-
ertheless, when the polygonal curves are reasonably
smooth and densely sampled, our polygonal algorithm
computes ball-morphs that closely approximate the ball-
morphs of the original smooth curves and are acceptable
for animation or surface reconstruction. Because most

Fig. 12. The blue stroke can be expressed as the normal
offset (top) or as the ball-offset (bottom) of the orange
stroke.

Fig. 13. Two curves that are b-compatible (left), but not
c-compatible (right).

Fig. 14. To obtain the point q on Q that corresponds,
through the ball-map, to point p on P , we compute the
smallest positive r such that m = p + r �NP (p) is at
distance r from Q and return its closest projection q on
Q. Point m is on the median and defines the center of the
circle tangent at both p and q. The circular (black) and
parabolic (purple) ball-morph trajectories are defined by
the inscribing isosceles triangle ∆pmq. The linear ball-
morph trajectory is the line segment pq.

other morphing schemes to which we compare our ball-
morphs work on polygonal curves, we use the polygonal
ball-morph implementation to ensure consistency in our
experiments.

4.1 Ball-map correspondence

Consider the maximal disk centered at point m ∈ M .
The ball-map [1] establishes the correspondence between
the closest projection p of m onto P and the closest
projection q of m onto Q. The maximal disk D cen-
tered at m touches P at p and Q at q, as shown in
Fig. 14. The ball-map may be viewed as a continuous
version of an approach proposed by [41] for establishing
correspondences between surfaces by considering their
distance fields. A uniform sampling of the ball-map cor-
respondence may be computed in several ways: (1) By
initially computing M as the medial axis of G(P,Q)
between two curves P and Q using efficient medial
axis construction techniques [50][51] and then generating
the closest projections p and q for a set of uniformly
spaced sample points m ∈ M ; (2) By computing the
radii of the maximal disks that touch P at a set of
uniformly spaced samples p; or (3) By simultaneously
advancing the corresponding points, p and q, until one
of them has travelled from the previous sample on its
curve by a prescribed geodesic distance. To ensure a
fair comparison with techniques that lack the symmetry
of the ball-morphs, we will use the second (asymmetric)

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 7

approach, although the first one yields the best results.
The details of the construction of this mapping for

the case when P and Q are piecewise-circular and when
they are polygonal approximations of smooth curves are
provided below.

4.2 Ball-morph trajectories

For each maximal disk, we consider five paths (curve
segments) from p to q (Fig 14):

Hat: The broken line segment from p to m to q
(Fig 14 green).

Linear: The straight line segment from p to q
(Fig 14 yellow).

Tangent: The shorter of the two circular arc segments
of the boundary of D that joins p and q
(Fig 14 green).

Circular: The circular arc segment that is orthogonal
to P at p and to Q at q (Fig 14 black).

Parabolic: The parabolic arc segment that is orthogo-
nal to P at p and to Q at q (Fig 14 violet).

The circular and parabolic paths are trivially de-
fined by their enclosing isosceles triangle ∆pmq. The
parabolic path is the quadratic Bézier curve with control
vertices p, m and q. The center of the circle supporting
the circular path is the intersection of the tangent to P at
p and the tangent to Q at q.

All paths, including the linear path, are symmetric in
that the angles where they meet P and Q are equal.
Swapping the role of P and Q does not affect these seg-
ments. Hence, the ball-morphs derived here are symmetric
and may be inverted easily by swapping the role of P
and Q.

Let l be the midpoint of the linear path and let L be
the set of all points l. L is the midpoint locus proposed
by Asada and Brady [52]. Let t be the midpoint of the
tangent path and T be the set of all points t. T is the
Process-Inferring Symmetry Axis (PISA) proposed by
Layton [53] as a variation of the medial axis. Let n be the
midpoint of the circular path and N the set of all points n.
Let b be the midpoint of the parabolic path (quadratic B-
spline) and B be the set of all points b. The construction
of these 4 points, along with m is illustrated in Fig. 14.
The curves M , L, T , N and B usually differ from one
another, but may all be viewed as averages of P and Q.

A ball-morph advances, with time, each point p accord-
ing to uniform arc-length parameterization along one
of the five aforementioned paths. A result for the circu-
lar ball-morph is shown in Fig. 1 using seven inbetween
frames.

5 IMPLEMENTATION DETAILS

In this section, we provide implementation details for
PCCs and then for polygonal curves.

5.1 Details of the ball-map construction for PCCs
We include here the details of an exact implementation
(except for numerical round-off errors) for the case of

Fig. 15. Computing r, m and p from q for a circular arc
Qi. q2 is discarded since it does not lie on the arc Qi.

piecewise-circular curves in 2D, where P and Q are each
a series of smoothly connected circular-arc edges.

We first explain how we compute the ball-map of a
sample point. Then, we explain how to produce these
samples and how to reduce the computational complex-
ity of the whole process. We sample points on one curve
and for each such sample, say p on P , we compute
the corresponding point q on Q as explained below.
Here we assume that p is not on Q, as discussed above.
Consider the parameterized offset point m = r �NP (p),
whose distance from p is defined by the parameter r.
�NP (p) is the normal of P at p and it is oriented so
that it points towards the interior of the gap G(P,Q). By
construction, m is the center of a circle of radius r that
is tangent to P at p. We want to compute the smallest
positive r for which m is at distance r from Q, and hence
for which the circle is tangent to Q.

First consider a circular edge Qi of Q with center c and
radius s (Fig. 15). We compute r1 and r2 as the roots

s2 −−→cp2

2 �NP (p) · −→cp± 2s
(1)

of
−→cm2 = (r ± s)2. (2)

In order for m to define the center of a disk of radius
r that is tangent to Q, m must have either a minimum
or maximum distance of r from Q, or in other words, m
must be at distance r±s from c, as defined by Equation 2.
Substituting m = r �NP (p) and expanding yields a second
degree equation in r, the roots of which are given by
Expression 1.

We apply the above approach to all edges Qi of Q.
We compute the r-value for a circle supporting each
edge, compute the corresponding candidate point q on
the circle, discard it if it is not contained within the arc
(such as q2 in Figure 15), and select amongst the retained
(r,q) pairs with the one with the smallest r-value. Since
we assume that P and Q are b-compatible, there is exactly
one (r,q) pair for each point p ∈ P .

The above process computes the ball-map correspon-
dence for any desired sampling of P or Q.

To accelerate the computation of the ball-map for b-
compatible PCCs and produce a sampling-independent
representation from which different sampling densities

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 8

(1) (2) (3) (4)

Fig. 16. The lacing algorithm for b-compatible PCCs.
(1) An initial mapping is given between 2 points p,q.
They each sit at the start of a circular arc edge segment
(red). (2) A ball-map is computed from the endpoints of
the current arcs (p�,q�) to the current arc on the other
curve (red). Only p� produces a valid ball-map to the edge
segment [q,q�], so only it is kept. (3) p and q step forward
to positions occupied by p� and q��, and the process
repeats. Again, only p� produces a valid ball-map, so only
it is kept. (4) p and q again step forward. This time, q�

produces the valid ball-map.

Fig. 17. Lacing splits the gap G(P,Q) into arc-quads.
Each one is bounded by 4 circular arcs (2 edge-segments
and 2 ball-map arcs).

can be quickly derived, we perform a “lacing” process
(Fig. 16), to split the gap into arc-quads, each bounded by
4 circular arcs: one being a circular-arc edge-segment of
P , one being a circular-arc edge-segment of Q, and two
being ball-map arcs from a vertex of P or Q to its image
on the other curve.

To perform the lacing, we first pick a vertex p ∈ P ,
where two edges of P meet and compute its image q ∈ Q
as described above. Then, we perform a synchronized
walk to “lace” the gap, one vertex of P or Q at a time.
At each step, p is the start of an edge-segment Pi of P
not yet laced and q is the start of an edge-segment Qk

of Q not yet laced. Let p� be the end of Pi and q� be the
end of Qk. Let q�� be the corresponding point for p� and
p�� be the corresponding point for q�. If p�� falls on Pi,
we record that the edge-segment [q,q�] of Qk maps to
the edge-segment [p,p��] of Pi, close the current arc-quad
with the arc from q� to p��, and set p to p�� and q to q�

to continue the lacing process, as shown in Fig. 16.
This lacing process splits the edges of P and Q

into edge-segments and establishes a bijective mapping
between edge-segments of P and edge-segments of Q
that bound the same arc-quad. The cost of this pre-
computation is O(n) in the number of edges in P and
Q since at every step, only the current arc-edges Pi

and Qi are used to compute ball-map correspondences. It
can be performed in real-time, as the curves are edited,
which is convenient for the interactive design of b-

compatible curves. For disjoint loops, the lacing starts
at any vertex of P and terminates when it returns to
the starting point. For quasi-disjoint strokes, the lacing
starts at one common endpoint and finishes at the other
endpoint. A small variation of this approach, described
in [54], permits in linear time to either perform the lacing
when the two curves are b-compatible or to detect that
they are not.

5.2 Details of ball-map construction for PLCs
Because they are not smooth, piecewise-linear curves
cannot be b-compatible. However, we propose here an
approach for computing an approximate ball-map, treat-
ing piecewise-linear curves as approximations of smooth
curves. We treat vertices as circular arcs with infinitely
small radii and ignore incompatibilities as long as adja-
cent ball-maps do not intersect

First we show how to compute the ball-map from a
point p on P to a polygonal curve Q by computing the
radius of a circle that is tangent to P at p and touches
Q at a vertex or an edge. Assuming p is not a point of
intersection between P and Q. We estimate the normal
�NP (p) to P at p such that it is orthogonal to the line
passing through the two neighboring vertices of p along
P and that it points towards the interior of the gap. First,
for every vertex q of Q, we compute the r-value for a
ball with center m = p + r �NP (p) such that |m − p| =
|m− q| = r as follows:

r = −
−→qp2

2−→qp · �NQ(q)
(3)

Notice that we do not need to check explicitly that the
direction of vector −−→qm is a plausible normal to Q at q.
If it were not, the ball-map for edges of Q incident upon
q, computed as explained below, would return a smaller
radius.

For every edge Qi of Q with oriented edge-normal
�NQ(Qi) and vertices c,d, we compute the r-value for a
ball with center m = p+ r �NP (p) as follows:

r =
−→cp · �NQ(Qi)

1− �NP (p) · �NQ(Qi)
(4)

The corresponding point q is then computed as:

q = p+ r �NP (p)− r �NQ(Qi) (5)

The candidate mapping is discarded if q lies outside the
bounds of Qi.

The minimum r ball-map candidate among all vertex-
vertex and retained vertex-edge mappings is then se-
lected for point p.

For conciseness, we omit the discussion of singular
configurations where the denominators of these equa-
tions are 0. We trap these using a numeric tolerance and
use trivial formulations for the corresponding singular
(parallel or coincident) cases.

The ball-map construction for PLCs presented above
may fail when the curves are insufficiently smooth or

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 9

when the sampling process is not sufficiently dense. Our
experiments show that the application of a few simple
subdivision steps [55] produces curves for which our
construction works without problem. In fact, all results
in this paper were computed using the PLC method
described here unless explicitly stated otherwise. When
working on PLCs, we use a modified version of lacing.

Recall that in the PCC lacing algorithm, two points
(p and q) “walk” on each curve, where the maximum
step-size is determined by the length of the current
circular-arc. Instead, we now set a constant step-size
dStep. Therefore at each step, p� and q are computed
by walking along P and Q, respectively, a geodesic
distance of dStep. Our experiments show that using a
step-size that is twice larger than the longest edge of the
subdivided curves works well.

6 MEASURES

We first discuss how we sample space and time. Then,
we provide details of the measures used here to compare
morphs.

Three of the studied morphs (linear-interpolation,
curvature-interpolation, and laplace-blending) assume a
given correspondence. For simplicity, we use a uniform
arc-length sampling to produce the same number of
uniformly distributed samples on each curve. The three
ball-morphs use the ball-map correspondence. The other
morphs compute their own correspondence. This sam-
pling disparity makes it difficult to compute measures
for a fair comparison.

Consider for example the problem of measuring the
average travel-distance. This should be the integral of
travel distances. The problem is how to fairly select the
integration element. If for example we use the linear-
interpolation-morph, then the average distance measured
for a set of uniformly distributed samples will depend
on whether we start form P or Q. Since the average
travel-distance is a property of the mapping, and not the
sampling, a measure that so blatantly depends on the
sampling is clearly incorrect.

To overcome this problem, each reported measures is
the average of two measures, one computed by sampling
P and one computed by sampling Q. For the first mea-
sure, we sample the departure curve P using a dense set
of samples that are uniformly distributed on each curve
so as to be separated by a prescribed geodesic distance u.
For each sample pi on P , we compute the corresponding
point qi on the arrival curve Q so that qi is the image of
pi by the mapping associated with the particular morph-
ing scheme. We compute a measure mi associated with
the trajectory from pi to qi and the associated weight
wi = (|−−−−→pi−1pi|+|−−−−→qi−1qi|+|−−−−→pipi+1|+|−−−−→qiqi+1|)/4. Then, we
report the normalized weighted average (Σwimi)/(Σwi).
For the second measure, we sample the arrival curve Q
as before using the same geodesic distance u. For each
sample qi on Q, we compute the corresponding point pi

on the departure curve P , so that qi is the image of pi

by the mapping associated with the particular morphing
scheme. Then, we proceed as above.

We have implemented the following six measures of
morph quality.

Travel-distance: For each sample pi, we measure mi as
the arc length of the trajectory to the corresponding point
qi. Then, as explained above, we report the weighted
average of these from P to Q and vice-versa.

Stretch: We define stretch S(P,Q) as the average of the
integral over time of the stretch factor for an infinitesimal
portion of the curve. We compute its discrete approxi-
mation as follows. Let p and p� be consecutive samples
on P . Let L(p, t) be the length of the segment of P (t)
between p(t) and p�(t). We compute S(P,Q) as

S(P,Q) =
�

t∈[0,1−�]

��
p∈P |L(p, t+ �)− L(p, t)|

�

+
�

t∈[0,1−�]

��
q∈Q |L(q, t+ �)− L(q, t)|

�

Acceleration: Acceleration is defined as the derivative
of the expression of velocity in the local, time-evolving
frame, and measures the lack of steadiness [19] of the
motion.

Fig. 18. Acceleration (lack of steadiness) for a given
vector v of the morph trajectory is computed relative to
the neighboring triangles (green).

Let pt denote the position of a sample p at a time t.
We approximate the instantaneous velocity of pt by the
vector ptpt+�. For each such velocity on a morph tra-
jectory, we compute two barycentric coordinate vectors
BL(ptpt+�) and BR(ptpt+�) relative to the left and right
neighboring triangles Lt and Rt as shown in Fig. 18. The
steadiness at a point pt is then computed as:

gt =
1
2�BL(pt−�pt)−BR(pt−�pt)�

+ 1
2�BL(ptpt+�)−BR(ptpt+�)�

We compute the acceleration measure mi as the sum of the
gt terms over the trajectory of each point pi and report
their weighted average, as described above.

Distortion: At each point along the evolving curve
and at each time, the amount of distortion is proportional
to 1/cosθ, where θ is the angle between the direction of
travel and the normal to the evolving curve.

Let p and p� be consecutive samples on P (t) and
L(p, t) define the unit vector in the direction

−−→
pp�. Let

V(p, t) define the unit vector in the direction −−−−→ptpt+�. We
compute

ri =
�

t∈[0,1−�]

1

2
(L(p, t)+L(p, t+ �)) · 1

2
(V(p, t)+V(p�, t))

where · denotes dot product.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 10

Fig. 19. The ball-morph produces a pure rotation with
zero distortion between linear segments.

It was shown in [1] that the circular ball-morph is free
from distortion when morphing between linear segments
(in 2D) of P and Q (Fig. 19).

6.1 Mesh measures

In addition to the 2D measures, we also present results
of 3D measures of average squared mean curvature and
maximum squared mean curvature [56] of the resulting
triangle mesh surfaces constructed by interpolating the
input curves along the z-axis. In applications of surface
reconstruction from 2D planar contours, smoothness
of the resulting reconstruction is often desirable (see
Fig. 20).

Fig. 20. We show the slice-interpolating surface recon-
structed using a closest-projection-morph from-green-to-
blue (left), the reverse closest-projection-morph from-
blue-to-green (center), and the symmetric circular ball-
morph (right) which appears smoother. The amount of
local distortion is shown in red on the 2D drawings.

7 Composite ball-morphs
To produce morphs between curves that are not b-
compatible, we compute the relative blendings [57] P � =
RQ(P) and Q� = RP (Q) and the ball-morph M0 between
the resulting curves P � and Q�. The relative blendings of
two curves P and Q are computed by trimming away
the parts of the curve that violate the conditions of b-
compatibility and replacing them with circular arcs de-
fined by maximal disks in the gap G(P,Q).

This solution produces only the central part of the
morph, which must be concatenated in time and possibly
on both ends with other extension-morphs that fill the
incompatible features. There are 3 situations for comput-
ing the next extension-morph (morph M1):

1) If Q� and Q are b-compatible we compute their ball-
morph M1.

Fig. 21. Left: ball-map arcs between the relative blended
versions of the curves and closest-projection linear trajec-
tories from the blue curve to its relative blended version.
Right: The closest-projection-morph is not a homemor-
phism, so additional relative blending operations will be
necessary.

2) Else if the closest-projection-morph from Q to Q� is a
homeomorphism, we produce an extension-morph
M1 with the reversed straight line trajectories (Fig-
ure 21-left)

3) Otherwise, we compute the relative blending Q�� =
RQ�(Q), then compute the ball-morph M1 between
Q� and Q��.

Fig. 22. Simple composite ball-morph on curves P (blue)
and Q (orange). The circular arcs corresponding to the
relative blending operations that produce P �, Q�, and Q��

are shown in red. The final PCC trajectories are shown
on the right. Three inbetween frames are also shown
(bottom).

Note that in all cases, the trajectories of M1 leave Q�

along its local normal and are hence smoothly joined
with the trajectories of M0. If we run into situation
(3), we recurse on the gap between Q�� and Q. This
process fills the gap between Q� and Q by a series of
ball-morphs and possibly a final closest-projection-morph,
generating piecewise-circular trajectories (Fig. 21 left)
with possibly a straight line at the end of each one.
Note that without handling situation (2), the recursive
process would never converge since a ball will never
reach the sharp feature. We have produced a concate-
nation of morphs M1, M2, M3... We perform a similar
iterative process to invade the gap between P � and P ,
producing in this manner a series of morphs, which
we reference with negative integers: M−1, M−2, M−3...
The final combined morph is: ... M−3, M−2, M−1, M0,
M1, M2, M3 ... Fig. 22 shows a simple example which
produces a composite of four circular ball-morphs.

Although different synchronization approaches are
possible, the simplest one is to move each sample at

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 11

Fig. 23. A comparison between the composite ball-morph (top) and the heat-propagation-morph (bottom) on curves
that are not b-compatible. For each morph, the trajectories (left) are sampled uniformly through time to obtain the
inbetween curves (right).
a constant speed along its PCC trajectory during the
desired interval. Note that smooth inbetween curves are
not generated when using the composite ball-morph. How-
ever, the inbetween curves and trajectories are similar to
those produced by the heat-propagation-morph, as shown
in Fig. 23.

8 RESULTS

We first compare the ball-morphs to our benchmark set
using two different test cases, as shown in Figures 24
and 25. Then, we compare two of the ball-morphs to
the best two other morphs (laplace-blending and heat-
propagation) on a test case between an apple and a pear.
The closest-projection-morph is not shown for these tests
because the pairs of curves are not c-compatible (Fig. 13).

The first test case (Fig. 24) shows a morph between a
circle and an ellipse. Our experiments demonstrate that
the average travel-distance is the shortest when using the
linear ball-morph and that the circular ball-morph has the
least amount of distortion. Note that the heat-propagation-
morph is similar in terms of appearance to the circu-
lar ball-morph. However due to its reliance on a discrete
grid and other sampling issues, it is very susceptible to
acceleration and squared mean curvature errors in regions
where P and Q are very close relative to the chosen
grid size. The minimum squared mean curvature measures
(maximum and average) are produced by the curva-
ture and laplace-blending-morphs.

The test case shown in Fig. 25 shows a set of
symmetric ‘S’ shaped curves. This example highlights
the strength of the morphs which compute their own
correspondence (heat-propagation, ball-morphs). The other
morphs, which define correspondence through uniform
arc-length parameterization, exhibit extreme distortion
and travel lengths and also produce self-intersections
with the original curves. As with the previous example,
the travel-distance and distortion measures are minimized
by the linear and circular ball-morphs, respectively. The
heat-propagation-morph is very similar in terms of ap-
pearance and measure to the family of ball-morphs and
produces meshes with the smallest values of maximum
and average squared mean curvature.

The test case in Fig. 26 uses contours representing
an apple and a pear. We show the “best” four morphs
(linear ball-morph, circular ball-morph, heat-propagation and

laplace-blending) and compare their measures. Travel dis-
tance and distortion are still minimized for the lin-
ear and circular ball-morphs, respectively. The laplace-
blending approach performs best in terms of stretch. The
ball-morphs perform the best in terms of acceleration and
the worst in terms of squared mean curvature of the
resulting meshes.

The parabolic ball-morph is barely distinguishable from
the circular one, even though the surface it produces
has a higher maximum squared mean curvature. It may be
preferred in some applications, where the non-rational
quadratic parameterization of the trajectories simplifies
numeric calculations.

9 CONCLUSION

We have proposed a family of morphs between curves
which are b-compatible. All are based on variations of the
medial axis construction. We have compared them to one
another and to several other simple morphs. We used
four measures of morph quality in our comparison, as
well as surface measures for comparing them as surface
reconstruction techniques.

Although the heat-propagation-morph produces very
similar results to the ball-morphs, it has the disadvantage
of requiring rasterization to a grid and a PDE solve.
However, this method easily maps to more extreme
cases that are not b-compatible without need for special
extensions (other than a higher resolution grid).

We conclude that for the cases of b-compatible shapes,
the ball-morphs offer a precise and desirable result in
terms of distortion, travel-distance, as well as curvature.

Ball-morphs have many advantages. For example [1],
the circular ball-morph produces curves of Ck−1 continu-
ity that do not intersect one another for input curves of
Ck for k ≥ 2.

ACKNOWLEDGEMENT

This work has been partially supported by NSF grant
0811485 and by the Walt Disney Corporation.

REFERENCES

[1] F. Chazal, A. Lieutier, J. Rossignac, and B. Whited, “Ball-map:
Homeomorphism between compatible surfaces,” International
Journal of Computational Geometry and Applications, April 2010.

[2] J. Gomes, L. Darsa, B. Costa, and L. Velho, Warping and morphing
of graphical objects. San Francisco, CA, USA: Morgan Kaufmann
Publishers Inc., 1998.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 12

linear- linear parabolic circular heat- curvature- laplace-
interpolation ball-morph ball-morph ball-morph propagation interpolation blending

Measurements
travel-distance distortion stretch acceleration avg. mean curv.2 max mean curv.2

linear-interp.
lin. ball-morph

para. ball-morph
circ. ball-morph

heat-propagation
curvature-interp.
laplace-blending

Fig. 24. Morph results for a circle and ellipse, showing the morph curves (top), the morph trajectories (middle) and
the surface created by sweeping the evolving curve, changing its height at a constant rate (bottom). Also displayed
are the measures for each morph with the smallest (best) value of each measure highlighted in orange.

linear- linear parabolic circular heat- curvature- laplace-
interpolation ball-morph ball-morph ball-morph propagation interpolation blending

Measurements
travel-distance distortion stretch acceleration avg. mean curv.2 max mean curv.2

linear-interp.
lin. ball-morph

para. ball-morph
circ. ball-morph

heat-propagation
curvature-interp.
laplace-blending

Fig. 25. Morph results for a set of ‘S’-shaped curves, showing the morph curves (top), the morph trajectories (middle)
and the surface created by sweeping the evolving curve, changing its height at a constant rate (bottom). Also displayed
are the measures for each morph with the smallest (best) value of each measure highlighted in orange. Note that some
of the morphs do not remain within the bounds of the input curves.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 13

linear ball-morph circular ball-morph heat-propagation laplace-blending

Measurements
travel-distance distortion stretch acceleration avg. mean curv.2 max mean curv.2

lin. ball-morph
circ. ball-morph

heat-propagation
laplace-blending

Fig. 26. Morph results for a set of apple and pear shaped curves, show the morph trajectories (top) and the surface
created by sweeping the evolving curve, changing its height at a constant rate (middle). Also displayed are the
measures for each morph with the smallest (best) value of each measure highlighted in orange.
[3] M. Alexa, D. Cohen-Or, and D. Levin, “As-rigid-as-possible shape

interpolation,” in SIGGRAPH ’00: Proceedings of the 27th annual
conference on Computer graphics and interactive techniques. New
York, NY, USA: ACM Press/Addison-Wesley Publishing Co.,
2000, pp. 157–164.

[4] E. Catmull, “The problems of computer-assisted animation,” SIG-
GRAPH Comput. Graph., vol. 12, no. 3, pp. 348–353, 1978.

[5] F. Thomas and O. Johnston, The Illusion of Life: Disney Animation,
revised ed. Disney Editions, 1995.

[6] A. Kort, “Computer aided inbetweening,” in NPAR ’02: Pro-
ceedings of the 2nd international symposium on Non-photorealistic
animation and rendering. New York, NY, USA: ACM, 2002, pp.
125–132.

[7] W. T. Reeves, “Inbetweening for computer animation utilizing
moving point constraints,” SIGGRAPH Comput. Graph., vol. 15,
no. 3, pp. 263–269, 1981.

[8] B. Whited, G. Noris, M. Simmons, R. Sumner, M. Gross, and
J. Rossignac, “Betweenit: An interactive tool for tight inbetween-
ing,” Comput. Graphics Forum (Proc. Eurographics), vol. 29, no. 2,
pp. 605–614, 2010.

[9] S. E. Chen and R. E. Parent, “Shape averaging and it’s applications
to industrial design,” IEEE Comput. Graph. Appl., vol. 9, no. 1, pp.
47–54, 1989.

[10] S.-W. Cheng and T. K. Dey, “Improved constructions of delaunay
based contour surfaces,” in SMA ’99: Proceedings of the fifth ACM
symposium on Solid modeling and applications. New York, NY, USA:
ACM, 1999, pp. 322–323.

[11] G. Barequet and M. Sharir, “Piecewise-linear interpolation be-
tween polygonal slices,” Comput. Vis. Image Underst., vol. 63, no. 2,
pp. 251–272, 1996.

[12] S. Akkouche and E. Galin, “Implicit surface reconstruction from
contours,” Vis. Comput., vol. 20, no. 6, pp. 392–401, 2004.

[13] H. Fuchs, Z. M. Kedem, and S. P. Uselton, “Optimal surface
reconstruction from planar contours,” Commun. ACM, vol. 20,
no. 10, pp. 693–702, 1977.

[14] D. Cohen-Or, A. Solomovic, and D. Levin, “Three-dimensional
distance field metamorphosis,” ACM Trans. Graph., vol. 17, no. 2,
pp. 116–141, 1998.

[15] G. Barequet and A. Vaxman, “Nonlinear interpolation between
slices,” in SPM ’07: Proceedings of the 2007 ACM symposium on
Solid and physical modeling. New York, NY, USA: ACM, 2007, pp.
97–107.

[16] N. C. Gabrielides, A. I. Ginnis, P. D. Kaklis, and M. I. Karavelas,
“G1-smooth branching surface construction from cross sections,”
Comput. Aided Des., vol. 39, no. 8, pp. 639–651, 2007.

[17] A. Efrat, S. Har-Peled, L. J. Guibas, and T. M. Murali, “Morphing
between polylines,” in SODA ’01: Proceedings of the twelfth annual
ACM-SIAM symposium on Discrete algorithms. Philadelphia, PA,
USA: Society for Industrial and Applied Mathematics, 2001, pp.
680–689.

[18] K. Siddiqi and S. Pizer, Medial Representations: Mathematics, Algo-
rithms and Applications. Springer, 2008, 450pp. In Press.

[19] J. Rossignac and A. Vinacua, “Sam: Steady affine morph,” to ap-
pear in the IEEE Transactions on Computer Graphics and Visualization,
2010.

[20] A. H. Barr, “Global and local deformations of solid primitives,”
in SIGGRAPH ’84: Proceedings of the 11th annual conference on
Computer graphics and interactive techniques. New York, NY, USA:
ACM, 1984, pp. 21–30.

[21] T. Beier and S. Neely, “Feature-based image metamorphosis,”
SIGGRAPH Computer Graphics, vol. 26, no. 2, pp. 35–42, 1992.

[22] E. Ezra, M. Sharir, and A. Efrat, “On the icp algorithm,” in
SCG ’06: Proceedings of the twenty-second annual symposium on
Computational geometry. New York, NY, USA: ACM, 2006, pp.
95–104.

[23] F. Mokhtarian, S. Abbasi, and J. Kittler, “Efficient and robust
retrieval by shape content through curvature scale space,” in Proc.
International Workshop IDB-MMS96, 1996, pp. 35–42.

[24] N. Gelfand, N. J. Mitra, L. J. Guibas, and H. Pottmann, “Robust
global registration,” in SGP ’05: Proceedings of the third Eurographics
symposium on Geometry processing. Aire-la-Ville, Switzerland,
Switzerland: Eurographics Association, 2005, p. 197.

[25] G. Mori, S. Belongie, and J. Malik, “Efficient shape matching using
shape contexts,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 27,
no. 11, pp. 1832–1837, 2005.

[26] S. Wang, Y. Wang, M. Jin, X. Gu, and D. Samaras, “3d surface
matching and recognition using conformal geometry,” in CVPR
’06: Proceedings of the 2006 IEEE Computer Society Conference on
Computer Vision and Pattern Recognition. Washington, DC, USA:
IEEE Computer Society, 2006, pp. 2453–2460.

[27] J. Schreiner, A. Asirvatham, E. Praun, and H. Hoppe, “Inter-
surface mapping,” in SIGGRAPH ’04: ACM SIGGRAPH 2004
Papers. New York, NY, USA: ACM, 2004, pp. 870–877.

[28] M. Cui, J. Femiani, J. Hu, P. Wonka, and A. Razdan, “Curve
matching for open 2d curves,” Pattern Recogn. Lett., vol. 30, no. 1,
pp. 1–10, 2009.

[29] R. W. Sumner, M. Zwicker, C. Gotsman, and J. Popović, “Mesh-
based inverse kinematics,” in SIGGRAPH ’05: ACM SIGGRAPH
2005 Papers. New York, NY, USA: ACM, 2005, pp. 488–495.

[30] T. W. Sederberg and E. Greenwood, “A physically based approach
to 2–d shape blending,” in SIGGRAPH ’92: Proceedings of the 19th

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 14

annual conference on Computer graphics and interactive techniques.
New York, NY, USA: ACM, 1992, pp. 25–34.

[31] T. W. Sederberg, P. Gao, G. Wang, and H. Mu, “2-d shape
blending: an intrinsic solution to the vertex path problem,” in
SIGGRAPH ’93: Proceedings of the 20th annual conference on Com-
puter graphics and interactive techniques. New York, NY, USA:
ACM, 1993, pp. 15–18.

[32] M. Alexa, “Differential coordinates for local mesh morphing and
deformation,” The Visual Computer, vol. 19, pp. 105–114, 2003.

[33] D. Xu, H. Zhang, Q. Wang, and H. Bao, “Poisson shape inter-
polation,” in SPM ’05: Proceedings of the 2005 ACM symposium on
Solid and physical modeling. New York, NY, USA: ACM, 2005, pp.
267–274.

[34] H. Fu, C.-L. Tai, and O. K. Au, “Morphing with laplacian coordi-
nates and spatial temporal texture,” in Proc. Pacific Graphics ’05,
2005, pp. 100–102.

[35] G. Cong and B. Parvin, “A new regularized approach for con-
tour morphing,” in Computer Vision and Pattern Recognition, 2000.
Proceedings. IEEE Conference on, vol. 1, 2000, pp. 458–463 vol.1.

[36] B. Aronov, R. Seidel, and D. Souvaine, “On compatible triangu-
lations of simple polygons,” Comput. Geom. Theory Appl., vol. 3,
no. 1, pp. 27–35, 1993.

[37] Y. Weng, W. Xu, Y. Wu, K. Zhou, and B. Guo, “2d shape defor-
mation using nonlinear least squares optimization,” Vis. Comput.,
vol. 22, no. 9, pp. 653–660, 2006.

[38] H. Guo, X. Fu, F. Chen, H. Yang, Y. Wang, and H. Li, “As-rigid-
as-possible shape deformation and interpolation,” J. Vis. Comun.
Image Represent., vol. 19, no. 4, pp. 245–255, 2008.

[39] M. Shapira and A. Rappoport, “Shape blending using the star-
skeleton representation,” IEEE Comput. Graph. Appl., vol. 15, no. 2,
pp. 44–50, 1995.

[40] W. Che, X. Yang, and G. Wang, “Skeleton-driven 2d distance
field metamorphosis using intrinsic shape parameters,” Graphical
Models, vol. 66, no. 2, pp. 102–126, 2004.

[41] R. Klein, A. Schilling, and W. Straβer, “Reconstruction and sim-
plification of surfaces from contours,” in PG ’99: Proceedings of
the 7th Pacific Conference on Computer Graphics and Applications.
Washington, DC, USA: IEEE Computer Society, 1999, p. 198.

[42] X. Chen, M. R. Varley, L.-K. Shark, G. S. Shentall, and M. C.
Kirby, “An extension of iterative closest point algorithm for 3d-
2d registration for pre-treatment validation in radiotherapy,” in
MEDIVIS ’06: Proceedings of the International Conference on Medical
Information Visualisation–BioMedical Visualisation. Washington,
DC, USA: IEEE Computer Society, 2006, pp. 3–8.

[43] J. Rossignac and A. Kaul, “Agrels and bips: Metamorphosis as a
bézier curve in the space of polyhedra,” Comput. Graph. Forum,
vol. 13, no. 3, pp. 179–184, 1994.

[44] R. Tilove, “Set membership classification: A unified approach to
geometric intersection problems,” Computers, IEEE Transactions on,
vol. C-29, no. 10, pp. 874–883, Oct. 1980.

[45] F. Chazel, A. Lieutier, and J. Rossignac, “Orthomap:
Homeomorphism-guaranteeing normal-projection map between
surfaces,” in ACM Symposium on Solid and Physical Modeling
(SPM), 2005, pp. 9–14.

[46] F. Chazal, A. Lieutier, and J. Rossignac, “Normal-map between
normal-compatible manifolds,” Int. J. Comput. Geometry Appl.,
vol. 17, no. 5, pp. 403–421, 2007.

[47] M. Guthe, P. Borodin, and R. Klein, “Fast and accurate hausdorff
distance calculation between meshes,” Journal of WSCG, vol. 13,
no. 2, pp. 41–48, February 2005.

[48] H. Federer, Geometric Measure Theory. Springer Verlag, 1969.
[49] J. Rossignac and A. A. G. Requicha, “Piecewise-circular curves for

geometric modeling,” IBM J. Res. Dev., vol. 31, no. 3, pp. 296–313,
1987.

[50] M. Foskey, M. Lin, and D. Manocha, “Efficient computation of a
simplified medial axis,” in ACM Symposium on Solid Modeling and
Applications, 2003, pp. 96–107.

[51] Y. Yang, O. Brock, and R. N. Moll, “Efficient and robust computa-
tion of an approximated medial axis,” in SM ’04: Proceedings of the
ninth ACM symposium on Solid modeling and applications. Aire-la-
Ville, Switzerland, Switzerland: Eurographics Association, 2004,
pp. 15–24.

[52] H. Asada and M. Brady, “The curvature primal sketch,” IEEE
Trans. Pattern Anal. Mach. Intell., vol. 8, no. 1, pp. 2–14, 1986.

[53] M. Leyton, Symmetry, Causality, Mind. MIT Press, 1992.
[54] B. Whited, “Tangent-ball techniques for shape-processing,” Ph.D.

dissertation, College of Computing, Georgia Institute of Technol-
ogy, Atlanta, GA, 2009.

[55] J. Rossignac and S. Schaefer, “J-splines,” Computer Aided Design,
vol. 40, no. 10-11, pp. 1024–1032, 2008.

[56] M. Meyer, M. Desbrun, P. Schröder, and A. H. Barr, “Discrete
differential-geometry operators for triangulated 2-manifolds,”
CalTech, Tech. Rep.

[57] B. Whited and J. Rossignac, “Relative blending,” Computer Aided
Design, vol. 41, no. 6, pp. 456–462, 2009.

Brian Whited is a recent Ph.D.
graduate in Computer Science from
Georgia Tech and is now a Senior
Software Engineer and Researcher at
Walt Disney Animation Studios. His
research interests include geometric
representation, design and visualiza-
tion as well as animation, morphing
and interpolation. During his Ph.D.
he worked as a research intern for
both Siemens Coroporate Research

and Walt Disney Animation Studios, which resulted in 4
joint patents and 5 peer-reviewed articles in addition to
6 other published works in the areas of computational
geometry and interactive surgery planning.

Jaroslaw (Jarek) Rossignac is a
Full Professor of Computing at Geor-
gia Tech. His research focuses on
the design, representation, simpli-
fication, compression, analysis and
visualization of highly complex 3D
shapes, structures, and animations.
Before joining Georgia Tech in 1996
as the Director of the GVU Center, he
was Senior Manager and Visualiza-
tion Strategist at the IBM T.J. Watson

Research Center. He holds a Ph.D. in E.E. from the Uni-
versity of Rochester, a Diplme d’Ingnieur from the Ecole
Nationale Suprieure en lectricit et Mcanique (ENSEM),
and a Matrise in M.E. from the University of Nancy,
France. He authored 25 patents and 130 peer-reviewed
articles for which he received 23 Awards. He created the
ACM Solid Modeling Symposia and expanded them into
the annual Solid and Physical Modeling (SPM) confer-
ences; chaired 30 conferences and program committees;
delivered about 30 Distinguished or Invited Lectures and
Keynotes; and served on the Editorial Boards of 7 profes-
sional journals and on 74 Technical Program committees.
Currently he heads the NSF Aquatic Propulsion Lab
(APL) and the Modeling, Animation, Graphic, Interac-
tion, and Compression (MAGIC) Lab at Georgia Tech,
which hosts the Disney-sponsored Feature Animation
Production Automation (FAPA) project. Rossignac is a
Fellow of the Eurographics Association and the Editor-
in-Chief of GMOD (Graphical Models).

