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Abstract

This paper presents a novel mesh fairing method to remove unwanted geometric artifacts such as dents. The key
element of the proposed method is our unique algorithm for the assignment of weights in the discrete Laplacian.
Our weights reflect the orientation of the first ring of vertices around a given vertex with respect to the whole
dented region, rather than the ring's local geometry (e.g. Gauss or mean curvature flow that needs to be re-
estimated per each iteration). To establish the dent region’s global behavior, we perform principal curvature
analysis to determine representative geodesic curves for the surface. Our method is efficient as it only needs to
compute the geodesic curves once, and then it uses them to guide subsequent iterations of anisotropic relaxation.

Categories and Subject Descriptors: G.1.1 [Numerical Analysis]: Smoothing, 1.3.5 [Computer Graphics]:
Geometric algorithms, languages, and systems, 1.3.7 [Computer Graphics]: Animation [.4.8 [Computer Graphics]:

Shape Analysis

1. Introduction

Animated deformations of complex models often result in
visually unappealing artifacts, such as undesirable dents and
wrinkles. Typically these problems arise when meshes are
deformed into various extreme poses. For example, posing a
character model with its chin up requires extra geometry
around the neck region to support necessary deformations.
However, when an animator poses the character with its
chin down, the extra geometry produces a dent around the
neck (Figure 1.a). Unfortunately, simple mesh relaxation
does not fix the problem, but instead widens the dent,
smoothes the slopes, and creates visually unacceptable
results (Figure 1.b). Character modelers also desire a
method to flatten dents and wrinkles. This becomes
especially important during model prototyping when a
modeler might need a simple, agile tool to try a new look on
a character by removing dents or wrinkles. Moreover, dent
and wrinkle removal are relevant not only to the game and
feature animation industry but also to any applications that
use 3d scanned data.

Motivated by adding a “dent-removal mechanism” to our
artists” tool-set, we have developed a robust, surface-
parameterization independent algorithm that automatically
detects and removes dents without imposing significant
penalties on runtime performance. Our algorithm is based
on determining special geodesic curves, representative of
the dent’s orientation, and using these curves as reference
for directional pulling iterations. Implementation of the
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presented algorithm proved to be straightforward and
produced impressive results on real production data.
Mathematically, we define dents and wrinkles as regions
that meet two requirements — first, regions contain one or
more parallel soft feature curves; second, the regions exhibit
high curvature across these curves. The sign of this high
curvature differentiates dents from wrinkles. While our
algorithm is successfully applicable to removal of both
wrinkles and dents, for the purpose of example, the rest of
the paper illustrates the algorithm on the case of dented
geometry. The paper is structured as follows: In Section 2,
we give a brief overview of related work. Then, in Section
3, we describe the main concepts behind our algorithm. In
Section 4, we give a detailed description of geodesic curve
selection. Finally, we provide our results in Section 5.

2. Related Work

Most fairing methods are based on Laplacian smoothing.
For mesh vertex p;, Laplacian smoothing is given by

ap,
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where V2 p; is the Laplacian at p,. We can approximate (1)
by rewriting it using finite differences

t+1

pit=(-e)p;+eVip)] )
where e is a user defined envelope, and ¢ is the iteration
number. If we define the umbrella of p; as the set of its
edge-connected vertices, the Laplacian in (2) can be
approximated using the sum of an umbrella-based function f°
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Figure 1: Dented chin region on hamster model: (a) shows original shape, (b) demonstrates result of traditional
(Laplacian) relaxation, and (c) is result of our relaxation scheme.
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where j is umbrella index of vertex p;. Often f{i,j) is simply
the distance function between p; and p;. Repeatedly
applying formula (3) to each vertex of the region, one can
efficiently smooth the desired area of the mesh.

Unfortunately, Laplacian smoothing results in surface
shrinkage. One of the first major solutions for this problem
was offered by Taubin [Tau95]. He used the second order
Laplacian to compensate for the shrinkage. However, the
results of this relaxation were highly dependent on the
choice of the coefficients for the first and second order
Laplacian operators. Desbrun et al. attempted to solve the
shrinkage problem by making umbrella coefficients
sensitive to the mean curvature flow [DMS*99]. For each
smoothing iteration, the mean curvature was calculated
locally at each vertex umbrella. Pauly et al. estimated the
shrinkage associated with each umbrella, and made
adjustments to compensate for this artifact [PKG02]. To
preserve features, Hildebrandt et al. estimated curvature
around each vertex and then faired the surface by smoothing
the vertex curvatures [HP04]. Mesh fairing with volume and
feature preservation was further developed in [MTO02,
TWB*02, ZX06].

In the prior smoothing approaches, positioning of any
particular vertex relies on various local geometric
properties, emphasizing the vertex’s local geometry (for
example, vertex’s mean curvature [DMS*99, HP04]).
However, the local geometry of any particular vertex alone
is not descriptive enough to iteratively reposition the vertex
for adequate dent removal, and therefore, our algorithm
adjusts the vertices based on their global positions within
the dent to solve this problem.

3. Algorithm Overview

Our objective is to remove the dent by pulling the dented
area upward while maintaining well-structured quads. To do
this, we need to provide an appropriate function f{i,j) for
iterations, defined by (3). This function should be
completely independent from the surface parameterization
and should produce larger weights for umbrella vertices that
contribute the most to pulling throughout the whole set of
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iterations. To achieve interactive rate, we restrict f{7,j) to
functions that need to be evaluated once per dented region,
not every fairing iteration.

However, we cannot simply estimate curvature in each
direction of the umbrella vertex and assign heavier weights
to vertices in the direction of the higher curvature (e.g.
estimating the tangential component of the Laplacian of the
umbrella). This type of local scheme does not account for
the dent’s global orientation. For regions where the whole
dent is bent, like the region around the character’s neck, a
vertex umbrella may initially exhibit maximum curvature
parallel to the dent’s direction. After the first few iterations,
this local smoothing scheme would flatten the bent slope.

Intuitively, we want f{i,j) to produce the weights
reflecting the alignment of the vector, defined by the pulled
vertex p; and its umbrella vertex p;, with the direction of the
surface curve that runs across the dent. We find this
direction as the tangential direction at p; of a geodesic curve
that has the maximum global curvature (i.e. total curvature)
over all geodesic curves through p;. This maximum global
curvature is expressed as follows:

pi€y Pi€Y

max K(y) = maxj x(t)dt 4

where yis a geodesic curve that lies on the dented region
and runs across p;, [a,b] is the parameter range of % K is
total curvature of % and k'is a curvature at a particular point
of % By maximizing the total curvature of % we ensure that
the curve spans the dent’s valley across the dent. Figure 2
shows an example of such a geodesic curve. Then f{i,))

Figure 2: The red surface curve is an example of a
geodesic curve that spans the dent

© The Eurographics Association 2009.



D. Pinskiy / Dent Removal: Geodesic Curve-Based Mesh Fairing

trivially becomes the dot product of vector p;-p; and the
tangent direction of the geodesic curves. Given a dented
region on a polygonal mesh, the main issue is then how to
efficiently estimate the spanning geodesic curves for each
vertex within a dented region.

4. Calculation of Spanning Geodesic Curves

Establishing the dent-spanning geodesic curves starts with
locating vertices on the dent’s valley. The direction of
maximum curvature at a vertex on the valley describes the
spanning geodesic curve that passes through this vertex.
Once we have found the spanning geodesic curves in the
valley, we propagate their direction to the vertices that lay
on the slope. Let’s consider the steps for calculating the
spanning geodesic curves on the dent region more closely.

To distinguish vertices on the valley from the rest, we
observe that their curvatures are much higher. Thus,
performing even fast, approximate curvature estimation (for
example, based on projections of the vertex normals onto
the surrounding faces), we are able to efficiently locate the
valley vertices. After that, we perform a more precise
curvature analysis, limiting it only to the valley vertices.

There are a wide variety of techniques used to evaluate
curvature on a polygonal mesh. Most of them fall into two
groups — estimation based on fitting patches [e.g. CP05] and
estimation based on normal curvature evaluation [e.g.
Tau95*]. We found fitting patches to be unstable when the
valley region contains degenerate quads or have even
slightly creased slopes. On the other hand, normal
curvature-based evaluation proves to be both efficient and
reliable. In our algorithm, we have employed an approach
presented by Taubin [Tau95*]. He specifies matrix M,,;,
defined as

1 7 ,
Mpi=gjl(pi(Tg)T9ng6’ 5)

where T, is a unit vector, oriented by angle € in the
umbrella of the vertex p;, and &;,;(T) is directional curvature
at p; in Ty direction. The eigenvectors of M), are principal
directions and its eigenvalues m; and m, can be used to
calculate the principal curvatures k; and £;:

k, =3m, —m,

k, =3m, —m, ©)
Taubin shows that one can approximate (5) by
M ,.= wa,jki,jz:/z‘fj
! (7

where T;; is the projection of the edge (between p; and its
umbrella vertex p;) onto a plane, tangent at p; and w;; is a
user defined weight, proportional to the areas of faces that
share p; - p; edge, k;; is curvature in the direction of 7;; and
can be calculated as

_ 2N(p1 B p/) g
lp=p, I ®
where N is surface normal at p;. Thus, we can apply (7) to

calculate M, for each valley vertex and then, through eigen-
analysis, obtain the principal curvature information.

i
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Once we have established the dent’s orientation for the
valley vertices, we propagate this information further to the
slope vertices. This is accomplished in two steps.

First, we assign some initial directions of geodesic curves
to each valley vertex, using an advancing-front technique.
Let’s define the vertex ring ring; as follows — ring, is a set
of the valley vertices (seeds), ring;+, is a set of vertices from
umbrellas of ring;’s vertices. Note that the same vertex can
belong to more than one ring. Then the front propagates
from the seeds toward the dent’s boundaries as represented
in the pseudo code below

for each ring; where i :=0... MAX

for each vertex v; € ringi
for each vertex v € umbrella of v,
if vy is not processed
assigned the direction of v; based
on the direction of v;

Second, to avoid noise in the assignment of geodesic
curve directions, we run a Laplacian-like relaxation on
them, locking values at the valley vertices, as we consider
these values to be correct.

Temporal coherence is preserved since our algorithm is
not based on discrete topology, but rather, on underlying
geometry that typically deforms smoothly when animated
over time. Therefore, as we advance to the next animation
frame, we may select different seeds, but we should not see
dramatic changes in shape of the spanning geodesic curves,
which are the key elements responsible for creating the final
result.

Finally, to smoothly blend the pulled area into the rest of
the mesh, we perform several Laplacian smoothing
iterations on vertices both inside and around the dent.

Figure 3: Original Model

Figure 4: Model after applying the presented method to
smooth the chin and neck area.



D. Pinskiy / Dent Removal: Geodesic Curve-Based Mesh Fairing

5. Results

In our implementation, we incorporated paintable weight
maps (assigned envelope values per vertex) into the method.
Users can designate areas where they want to partially
preserve portions of the dent and/or differentiate between
deformable and non-deformable parts of the mesh by
painting low or zero envelope values in those areas (e.g. in
Figure 4 and 6 characters heads are painted with zeros).

The presented algorithm has been deployed in a
production environment and has proven to be a successful
solution in a wide variety of cases. A significant practical
value for animators comes from the fact that they only need
to setup the dent pulling mechanism once. Then, our
algorithm handles the transient migration of the dents over
the course of animation by utilizing user specified areas
where dents may occur. The dent migration and
reorientation over time is reflected by selecting a different
set of valley vertices.

Since the number of expensive numerical computations is
minimized, our method yields very efficient performance.
Incorporating the tool into light animation scenes causes
frame rate to drop by less than 6% while adding the tool
into scenes with heavy animation does not have noticeable
impact on the frame rate at all.

Figure 6: Model after applying the presented method.

6. Conclusion

We have presented a novel approach to effectively remove
unwanted dent and wrinkle artifacts. Analyzing global
behavior of the problematic area, our algorithm finds the
most representative geodesic curves for the region. These
geodesic curves guide the assignment of umbrella weights
to perform the efficient pulling iterative process. Our
algorithm is straightforward to implement and our results
demonstrate its practical value in a production environment.
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