
Raytracing Prefiltered Occlusion for Aggregate Geometry
Dylan Lacewell1,2 Brent Burley1 Solomon Boulos3 Peter Shirley4,2

1 Walt Disney Animation Studios 2 University of Utah 3 Stanford University 4 NVIDIA Corporation

Figure 1: Computing shadows using a prefiltered BVH is more efficient than using an ordinary BVH. (a) Using an ordinary BVH
with 4 shadow rays per shading point requires 112 seconds for shadow rays, and produces significant visible noise. (b) Using
a prefiltered BVH with 9 shadow rays requires 74 seconds, and visible noise is decreased. (c) Reducing noise to a similar level
with an ordinary BVH requires 25 shadow rays and 704 seconds (about 9.5× slower). All images use 5× 5 samples per pixel.
The scene consists of about 2M triangles, each of which is semi-opaque (α = 0.85) to shadow rays.

ABSTRACT

We prefilter occlusion of aggregate geometry, e.g., foliage or hair,
storing local occlusion as a directional opacity in each node of a
bounding volume hierarchy (BVH). During intersection, we termi-
nate rays early at BVH nodes based on ray differential, and compos-
ite the stored opacities. This makes intersection cost independent of
geometric complexity for rays with large differentials, and simulta-
neously reduces the variance of occlusion estimates. These two
algorithmic improvements result in significant performance gains
for soft shadows and ambient occlusion. The prefiltered opacity
data depends only on geometry, not lights, and can be computed in
linear time based on assumptions about the statistics of aggregate
geometry.

1 INTRODUCTION

Soft shadows and ambient occlusion are important tools for realis-
tic shading in film production. However, these effects are expensive
because they require integration of global visibility at each shading
point. In a ray-based renderer, many shadow rays per shading point
may be needed to accurately estimate visibility without noise arti-
facts. Variance is especially a problem with aggregate geometry,
i.e., geometry consisting of a many small, disconnected parts, each
of which may not be fully opaque. Examples frequently occurring
in production include hair and foliage.

In this paper we show how to reduce the cost of visibility queries
for aggregate geometry by raytracing against a modified bounding
volume hierarchy (BVH) in which we store a prefiltered opacity
at each node, representing the combined visibility of all geometry
contained in the node. Prefiltering requires a modest increase in the
time to build or update a BVH; we demonstrate empirically that for

aggregate geometry, it suffices to use a prefiltering algorithm that is
linear in the number of nodes in the BVH. Once built, a prefiltered
BVH does not need to be updated unless geometry changes.

During rendering, we terminate shadow rays at some level of the
BVH, dependent on the differential [10] of each ray, and return the
stored opacity at the node. The combined opacity of the ray is com-
puted by compositing the opacities of one or more nodes that the
ray intersects, in any order. This early termination eliminates many
ray-triangle intersections, and makes intersection cost independent
of geometric complexity for rays with large enough differentials.
In addition, prefiltering also reduces the variance of occlusion esti-
mates on aggregate geometry, which in turn reduces noise artifacts
for a given number of shadow rays. Both benefits are demonstrated
in Figure 1.

The original contributions in this paper are as follows:

• We prefilter directional opacity; previous work focused on
prefiltering color.

• We present a simple linear-time opacity prefiltering algorithm
based on assumptions about the statistics of aggregate geom-
etry.

• We store prefiltered data in a BVH, a popular sparse accel-
eration structure that can be updated in linear time for many
types of dynamic scenes [25].

• We show empirically that prefiltering reduces the cost of com-
puting soft shadows and ambient occlusion.

A note about terminology: we use opacity or occlusion interchange-
ably to mean the percentage of light that is blocked between two
points, and visibility as the complement of occlusion.

2 BACKGROUND

We discuss only the most relevant work on visibility queries. We re-
fer the reader to the survey of shadow algorithms by Woo et al. [29],

IEEE copyright notice
(C)2008 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

or the more recent survey of real-time algorithms by Hasenfratz et
al. [7].

2.1 Raytracing
Distribution raytracing [5] is a general rendering method for many
global illumination effects, including shadows, and can be used
with prefiltered scenes. Mitchell [15] provided insights into how
the convergence of raytracing depends on the variance of the scene.
Variants of ray tracing such as packets [26], cone tracing [1], beam
tracing [8, 17], and the shadow volumes method of Laine et al. [13]
exploit geometry coherence to speed up intersection or reduce vari-
ance; these methods are less effective for aggregate geometry with
small pieces but would benefit from prefiltered geometry.

Precomputed radiance transfer [24] stores a raytraced reference
solution at each shading point, in a basis that allows environment
lighting at an infinite distance to be updated dynamically. True area
lights at a close distance are not easily accounted for.

2.2 Point Hierarchies
Many previous methods have estimated scene visibility using multi-
resolution hierarchies of points, spheres, or other primitives. Very
few point-based methods prefilter opacity, and most are demon-
strated on solid, connected geometry.

Bunnell [3] uses a hierarchy of disks, where disk sizes and po-
sitions are averaged, but changes in opacity due to empty space
are ignored. Multiple rendering passes are required to correctly
handle overlapping occluders. Pixar’s Photorealistic Renderman
(PRMan) [18] appears to use a similar method. Wand [27] renders
soft shadows by cone tracing a point hierarchy, but does not han-
dle opacity changes due to empty space, and observes that shadows
for foliage are overly dark. Ren et al. [20] approximate geometry
with sets of opaque spheres, and splat spheres using a spherical har-
monic technique that corrects for occluder overlap in a single pass.
No solution for opacity filtering is given. Kontkanen and Lane [12]
compute ambient occlusion by splatting opaque objects using pre-
computed visibility fields. Kautz et al. [11] rasterize scene visibility
into a small buffer at each shading point; this is conceptually simi-
lar to point-based occlusion, but mesh simplification is used rather
than a point hierarchy. Mesh simplification does not work well for
aggregate geometry.

A number of previous methods rasterize or raytrace very large
point sets, mostly for direct viewing [9, 22, 31]. The prefiltering
method employed is almost always averaging of point attributes,
without regard to accumulated directional opacity. Neyret [16] does
more precise prefiltering on an octree: surface color and normals
are modeled with ellipsoids, and filtered in a relatively principled
way. Opacity is averaged, not composited, and only shadows from
point lights are demonstrated.

Stochastic simplification [4] specifically targets aggregate geom-
etry, and prefilters by removing primitives randomly and changing
the sizes and colors of remaining primitives to maintain statistical
properties. This method could be used for direct rendering while
using our method for shadows.

2.3 Shadow Maps
Shadow maps are a common method for rendering shadows in
games and film production. Traditional shadow maps precompute
visibility in a scene for a frustum of rays originating at the light
origin; no other visibility queries are supported. Deep Shadow
Maps [14] and other multi-layer data structures [30] store a contin-
uous opacity function along each ray, which is needed for aggregate
geometry.

Shadow maps support constant-time queries, and are built by
rendering the scene in a separate pass, which is fast for scenes
of moderate complexity. However, shadow maps are less general
than raytraced visibility. Occlusion from small area lights can be

approximated with a single shadow map, but occlusion from large
and/or non-planar lights cannot. Although it is possible to represent
area lights using many shadow maps [21], computation time grows
linearly with number of lights.

The cost of building a shadow map is high for very complex
scenes. The resolution of shadow maps in production may be as
much as 16K ×16K, to ensure there are no aliasing artifacts; at our
studio we have occasionally even seen shadow map generation take
longer than final rendering. Separate maps are needed for every
light in a scene, and these maps must be recomputed when either
geometry or lights change. In contrast, our prefiltering method can
reuse the same precomputed data for any configuration of lights,
and for all instances of a given object.

2.4 Other work
Probably the most common use of prefiltering is for mipmapping
2D surface color [28]. However, thinking only of this example can
be misleading: averaging is (approximately) correct for diffuse sur-
face color, but not for normals or 3D opacity.

Mesh simplification, e.g., using a quadric error metric [6], can
be viewed as prefiltering, but does not explicitly preserve opacity,
and does not work well for aggregate geometry.

3 PREFILTERING OCCLUSION

Recall that our goal is to store prefiltered opacity in a BVH and
use this information to speed up visibility queries during rendering.
In this section we motivate this goal using Monte Carlo rendering
theory, then give the details of how we prefilter a BVH, and how
we intersect rays with a BVH using solid angle comparisons.

3.1 Theory
The irradiance at a surface point p with normal N is given by the
following integral:

H(p,N) =
∫

S
V (p,ω)L f (p,ω)(ω ·N)dω

where V (p,ω) is a visibility function that returns a value in [0,1],
L f (p,ω) is the incident radiance as seen by p in direction ω , and S
is a region of the unit hemisphere with solid angle Ω(S). Ambient
occlusion makes the approximation that L f = 1 and also adds a
distance term to visibility. Direct illumination for soft shadows can
also be rewritten as a sum over many lights instead of as an integral
over the hemisphere. Traditional Monte Carlo rendering samples
the area source uniformly in area with M samples and estimates the
integral with the following sum:

H ′ =
A
M

M

∑
i=1

V (p, p′i)Le(p′i, p− p′i)
cosθ cosθ ′

‖p− p′i‖2

where A is the area of the light source, p′i is a point chosen on
the light source, having normal N′, and the angles θ and θ ′ are
between the light direction vector p− p′i and the normals N and N′

respectively. Le is the surface radiance of the light, and is often
constant. Visibility is evaluated by casting a shadow ray between
points p and p′i.

If instead the luminaire can be sampled directly according to the
projected solid angle for the point p (see Shirley et al. [23] for ex-
amples where this is possible) the sum above can be rewritten as:

H ′ =
1
M

M

∑
i=1

V (p,ωi)L f (p,ωi)(ωi ·N)

where V (p,ωi) and L f (p,ωi) are visibility and radiance samples
computed by shooting a single shadow ray, with origin p and direc-
tion ωi. A single point sample is an estimate of irradiance over a
small region Sr(ωi) of the hemisphere having solid angle Ω/M.

Figure 2: A shadow ray has a virtual cone defined by solid angle.
We terminate the ray at (shaded) BVH nodes that fit within its cone,
and return the composited prefiltered opacities of the two nodes.
Nodes which do not intersect the ray are ignored, unlike with cone
tracing.

In either case, the rate at which the sum H ′ converges to the in-
tegral H is largely dependent upon the variance of V (p,ω), since
Le is usually constant over the luminaire, and the cosine terms vary
slowly. For scenes containing hair or vegetation, V may have very
high variance, but a noisy estimate of H is not acceptable for pro-
duction rendering.

We can eliminate much of the variance by prefiltering V and re-
placing it with a similar function, V , that varies more slowly:

V (p,ωi) =
1

Ω(Sr)

∫
Sr

V (p,ω)dω

For efficiency, we compute V before rendering, and store its approx-
imate value for many possible regions of integration. Precomputed
values of V can then be fetched and interpolated quickly during
rendering. This is the motivation for storing opacity in BVH nodes:
the opacity α of a node is the approximate value of 1−V for the
geometry within the node.

3.2 Ray Intersection using Solid Angles
In our modified intersection scheme, each ray has an associated vir-
tual cone defined by solid angle, Ωr = Ω(Sr) and ray length. A vir-
tual cone is a simple isotropic form of ray differential [10]. When
intersecting each ray with the BVH, we compare the solid angle of
the ray to the projected solid angle of the box, Ωb, and stop de-
scending when Ωr/Ωb > T , where T is a user-defined threshold.
Note that this is not the same as cone tracing; we are simply associ-
ating a solid angle with each ray but not performing exact intersec-
tion with a cone. For simplicity, instead of Ωb we use the projected
solid angle of the bounding sphere of the box, Ωs = πR2/|C− p|2,
where C is the box center and R is the radius. An intersection is
diagrammed in Figure 2.

Pseudo-code for a recursive ray-BVH intersection is shown in
Algorithm 1; for clarity we assume that both child nodes exist and
omit checking for null pointers, and also assume the existence of a
triangleOcclusion function which returns 1 if a given ray and trian-
gle intersect and 0 otherwise. When terminating, a ray-box inter-
section returns the approximate, pre-integrated opacity of the box,
as viewed from the ray direction. We make the assumption that
orthographic projection suffices, so that the opacity of the box de-
pends only on viewing direction, ω , and not viewing position, p.
This assumption has proven valid in practice, and becomes increas-
ingly accurate as the number of rays increase and their solid angles
decrease.

The final opacity of a shadow ray is computed by compositing
the opacities of every interior node or leaf triangle at which the ray
terminates. Nodes can be intersected in any order. This algorithm
avoids all ray-box and ray-triangle intersections below the termina-
tion depth in the BVH. However, since by design prefiltered nodes
are rarely opaque, it is likely that the ray intersects multiple interior
nodes. We show in the results section that this trade off is beneficial
for complex geometry and semi-opaque geometry.

Algorithm 1 occlusion(node, ray, t0, t1)
1: // Exit early if ray misses bounding box.
2: hitInterval = node.getBound().rayIntersect(ray)
3: if hitInterval.clip(t0, t1).isEmpty() then
4: return 0.0
5: end if
6:
7: // Descend immediately if node is below correlation height.
8: if node.height() <= K then
9: if node.isLeaf() then

10: return triangleOcclusion(node.getTriangle(), ray, t0, t1)
11: else
12: alpha0 = occlusion(node.left(), ray, t0, t1)
13: alpha1 = occlusion(node.right(), ray, t0, t1)
14: return alpha0 + alpha1 - alpha0*alpha1
15: end if
16: end if
17:
18: // Terminate ray based on solid angle
19: nodeSolidAngle = node.getSolidAngle(ray.origin)
20: if T * nodeSolidAngle < ray.solidAngle then
21: return node.getStoredOpacity(ray.direction)
22: end if
23:
24: // Recurse to child boxes.
25: alpha0 = occlusion(node.left(), ray, t0, t1)
26: alpha1 = occlusion(node.right(), ray, t0, t1)
27: leftSolidAngle = node.left().getSolidAngle(ray.origin)
28: rightSolidAngle = node.right().getSolidAngle(ray.origin)
29: childSolidAngle = min(leftSolidAngle, rightSolidAngle)
30:
31: // Lerp between recursive opacity and prefiltered node opacity.
32: if T * childSolidAngle < ray.solidAngle then
33: alpha = alpha0 + alpha1 - alpha0*alpha1
34: nodeAlpha = node.getStoredOpacity(ray.direction)
35: t = ray.solidAngle - T*childSolidAngle
36: t = t / (T*node.solidAngle - T*childSolidAngle)
37: t = clamp(0.0, 1.0, t)
38: return t * nodeAlpha + (1-t) * alpha
39: end if
40: return alpha0 + alpha1 - alpha0*alpha1

3.3 Computing Directional Opacity

We now describe how to compute orthographic directional opacity,
α(ω) = 1−V (ω), for each node of a BVH. We define nodes using
the sweep build from [25].

One algorithm for computing opacity is, after defining a node
during the build, to render all triangles contained in the node and
compute their average visibility. This algorithm has O(NT logNT)
time complexity for the entire BVH, where NT is the number of
triangles.

We can improve on this algorithm if we assume that each node
contains small, disconnected pieces of geometry that are not related
to geometry in any other node. Porter and Duff make a similar
assumption for pixels in their seminal work on image composit-
ing [19]. We assume that nodes for aggregate geometry approxi-
mately satisfy this assumption above some height K in the BVH,
where leaf nodes have height K = 0 and the height of an interior
node is computed by averaging the height of its two children. We
call K the correlation height. Note that strongly connected geom-
etry, e.g., an opaque subdivided plane, would not follow this as-
sumption, and in that case the opacity of a single BVH node should
not be computed solely from the geometry within it or light leaks
would occur.

Figure 3: One step in the bottom-up prefiltering of directional
opacity. Left: An example BVH node, with opacities already as-
signed to the two child nodes. Right: Cubemap of opacities, ren-
dered by projecting child boxes from multiple directions (top) and
then averaging each projection (bottom). Pixels shown in blue lie
outside the projection and are not averaged. Only three faces of the
cubemap are stored, since opacity is independent of depth order.

Figure 4: “Worm’s eye” view of the scene from a shading point,
using (a) Unfiltered geometry (triangles), (b) Prefiltered BVH opac-
ity with T = 2, (c) Prefiltered opacity with T = 0.1.

Given a correlation height K as input, we can assign opacity to a
node above K by rendering and compositing its two children using
orthographic projection and alpha blending from a small number of
directions. The projected image for each direction is averaged to
compute an opacity. This process is diagrammed in Figure 3. We
store directional opacity using a small cubemap with N2

C directions
per face; the results in this paper use NC = 3, and our projected im-
ages are each 10× 10 pixels. Only 3 faces of the cube need to be
rendered and stored since opacity is order-independent. For nodes
near leaves, below level K, we do not prefilter. Rays that inter-
sect these nodes during rendering will always descend the BVH,
as shown in lines 7-16 of Algorithm 1. To prefilter nodes at level
K, we compute an exact local opacity by rendering the triangles
contained in the nodes. The combined opacity computation for the
BVH using this hybrid method is O(NT), with storage requirements
O(NT). It may be possible to determine K automatically, perhaps
using a measurement of connectivity, but for our results we set K
manually.

A final note: we linearly interpolate prefiltered opacity queries
during rendering, by taking opacity values from both the level
where the ray terminates with a hit or miss, and the next higher
level, and interpolating between the two based on solid angle. This
is shown in lines 31-39 of Algorithm 1. Interpolating helps elimi-
nate any artifacts due to differences in the termination level of rays
from nearby shading points, or during animation of the lights.

4 RESULTS

4.1 Variance Analysis

Variance of scene properties causes visible noise in rendered im-
ages. To show that prefiltering the BVH reduces variance in the
visibility function, we rendered “worm’s eye” images of the bush
scene with the camera positioned at a shading point on the ground
plane, looking toward the area light. Worm’s eye images are shown
in Figure 4; black points indicate where rays strike the area light,

 0

 20

 40

 60

 80

 100

 120

 140

 160

 225 144 100 81 64 49 36 25

Va
ria

nc
e

Num Shadow Rays

Triangles
BVH Boxes

Large BVH Boxes

Figure 5: Variance of estimating the image mean for a given num-
ber of jittered samples (shadow rays), for the images shown in Fig-
ure 4. Variance was computed using 50,000 trials.

Table 1: BVH Build Times
Scene Triangles K Prefilter (s) Total Build (s)
Bush 2,020,600 5 24 36
Tentacles 3,823,893 10 11 35
Bamboo 5,181,376 5 108 144

and white points indicate occlusion.
The images shown here used 52 × 5122 rays. However, for per-

formance reasons we would like to estimate visibility during ren-
dering by averaging many fewer shadow rays, perhaps less than
100. We computed the variance of such an estimate by sampling
each worm’s eye image repeatedly with M jittered samples. Plots
of variance as a function of number of samples (shadow rays) are
shown in Figure 5. The prefiltered images (b) and (c) of Figure 4,
have lower variance, even though the top half of each image is con-
stant. We conclude that if this image is representative, then for ex-
ample using prefiltered geometry with 49 shadow rays would pro-
duce similar shadow noise as using the original geometry with 100
shadow rays.

4.2 Convergence
Figure 6 shows how our method approaches a reference solution
as the number of shadow rays increases. Even with prefiltering,
some minimum number of rays are required to adequately sample
the silhouettes of BVH nodes; one ray is not sufficient. Note that
we can also decrease noise for a given number of shadow rays by
decreasing T ; this will cause rays to stop at larger BVH nodes,
producing a result that is smoother but less accurate. Generally
we set T between 0.2 and 1.5, depending on the number of pixel
samples.

4.3 Performance
First we show that prefiltering ray intersection reduces dependence
on geometric complexity. Starting with the initial bush model,
which contains about 500K triangles, we used linear subdivision to
increase the triangle count by factors of 4×, to produce models with
approximately 2M and 8M triangles (32M would be out of core on
our test machine). We rendered each model using identical camera
and light parameters, using 4 parallel threads over image tiles, on
a machine with 4 Intel Xeon 2.66 GHz cores and 8 GB of mem-
ory. Shadow ray intersection times were computed using software
timers in each thread context, and we report the sum of thread time
divided by number of cores. Shadow computation times for the pre-
filtered and unfiltered scenes are plotted in Figure 9, as a function

Figure 6: Convergence of shadows from a prefiltered BVH with 5×5 samples per pixel, T = 0.2, and (a) 4 shadow rays, (b) 16 shadow rays,
and (c) 64 shadow rays. Lower row shows a heatmap, with shading based on the BVH level at which rays terminate. Rays that terminate at
larger nodes closer to the root are more blue.

 0

 100

 200

 300

 400

 500

 600

8M2M500K

Sh
ad

ow
 C

os
t (

Se
cs

)

Num. Triangles

Unfiltered, alpha=1.0
BVH, alpha=1.0

Unfiltered, alpha=0.85
BVH, alpha=0.85

Figure 9: Intersection times for the original bush model with 500K
triangles, and linearly subdivided models with 2M and 8M trian-
gles. We show times for both opaque and semi-opaque triangles.

of subdivision level. We repeated the test using semi-opaque tri-
angles, which frequently occur when rendering hair and foliage in
production.

There are at least two notable features of Figure 9. First, the
graph for the prefiltered geometry is nearly constant: shadow rays
that travel only a short distance descend to triangles and incur a log-
arithmic intersection cost, but rays that stop early at a given level
of the BVH continue to stop at the same level even after subdi-
vision. Figure 9 also shows that for opaque geometry with 500K

Table 2: BVH Memory Footprints
Scene Original (GB) Prefiltered (GB)
Bush 0.82 1.22
Tentacles 1.50 2.28
Bamboo 2.21 3.79

and 2M triangles, ray intersection is slower for the prefiltered ge-
ometry, ignoring differences in variance. This is because a shadow
ray with prefiltered geometry may intersect and composite multiple
non-opaque nodes, while a shadow ray for unfiltered geometry ter-
minates as soon as it hits a single opaque triangle. As complexity
increases, the time saved by not descending into prefiltered nodes
increases while the time spent compositing nodes remains constant.
Prefiltered shadows are slightly faster for 8M opaque triangles, and
much faster for semi-opaque geometry at all subdivision levels.

Next we show that soft shadows from prefiltered geometry have
less visible noise artifacts than shadows from unfiltered geometry
computed in similar time. We used three test scenes: the bush,
a “tentacles” scene that could represent hair or vegetation, and a
bamboo forest. We compare a prefiltered solution to an unfiltered
solution with similar cost, and a second solution with similar qual-
ity. Results are shown in Figure 1, Figure 7, and Figure 8. For
all three cases, the prefiltered geometry is more efficient, with re-
spective speedups of 9.5×, 6.3× and 3.9× for similar visible noise
levels; the speedup is lowest for the bamboo because this scene is
fully opaque and less dense than the other scenes. Speedups would
continue to increase with additional geometric density, as suggested
by Figure 9.

Figure 7: Ambient occlusion on “tentacles” model with 3,823,893 opaque triangles, 5×5 spp. (a) Unfiltered geometry, 9 shadow rays, 106
seconds. (b) Prefiltered geometry, 9 shadow rays, 66 seconds. (c) Unfiltered geometry, 36 shadow rays, 420 seconds.

Figure 8: Soft shadows on a bamboo forest with 5,181,376 opaque triangles, 5×5 spp. (a) Unfiltered geometry, 9 shadow rays, 64 seconds.
(b) Prefiltered geometry, 9 shadow rays, 87 seconds. (c) Unfiltered geometry, 49 shadow rays, 339 seconds.

The prefiltered results are smoother and very slightly darker than
the reference. Smoothing occurs when high frequency features in
the shadow cannot be reconstructed for a given number of shadow
rays; the alternative is visible noise, which we find much more ob-
jectionable. We suspect the darkening results from correlation be-
tween geometry in overlapping nodes which is not captured by our
method, but this needs more investigation.

We report single-threaded BVH build and prefiltering times for
all models in Table 1. We believe these times could be made faster,
since our BVH build/prefiltering code is single threaded and not
fully optimized. However, for static geometry, the times are still
reasonable, especially since the prefiltered BVH can be reused for
many images, including relighting scenarios. In the accompanying
video, we show static geometry with an animated light, where the
same BVH was used for all frames of the animation.

4.4 Compression
Prefiltered results shown thus far were generated using opacity
cubemaps with 3 × 3 resolution per face. The cubemaps require
27 extra floats per BVH node, which increases the memory foot-
print of the BVH as shown in Table 2. To reduce the footprint, each
cubemap could be represented more efficiently in the spherical har-
monics basis. We have not yet implemented this type of compres-
sion, but as an early test we tried storing only the average value
of the cubemap, which corresponds to the first, or “DC” spherical
harmonics coefficient.

We also experimented with a simple, non-directional prefiltering

method where we computed a scalar opacity per BVH node using
an ad-hoc estimate of projected area:

α = α0A0/A+α1A1/A−α0α1A0A1/A2

Here A,A0,A1 are the cross sectional areas of the bounding spheres
for the BVH node and the two child nodes, respectively. The goal
here was to find a simple formula that might generate plausible re-
sults; we also tried using volume ratios of the child nodes to the
parent node as weights in the compositing equation, but that almost
always underestimated opacity.

In Figure 10 we compare a reference solution, directional opac-
ity using a cubemap, “DC” average opacity, and the ad-hoc method
described above. The ad-hoc method produces noticeably darker
shadows and occlusion for the bush, tentacles, and bamboo scenes,
although the darkening might be acceptable for some applications.
We also constructed a scene with very directional behavior by dis-
tributing particles within a sphere, with every particle facing the
same direction. In the row of Figure 10 labeled “Particles-transmit”
all particles face 90 degrees away from the light, so that the maxi-
mum amount of light is transmitted; in the row labeled “Particles-
block” all particles face the light, so that the maximum amount of
light is blocked. The cubemap opacity captures much of the change
in particle orientation, after increasing to 12×12 resolution for this
case (the other cases use 3× 3 resolution). The “DC” and ad-hoc
results do not capture any change in particle orientation, and the
ad-hoc method produces overly dark shadows for both orientations.

These tests lead us to believe that for many applications a small
number of spherical harmonics coefficients would suffice for occlu-
sion from aggregate geometry, although more coefficients would be
needed for geometry that was strongly aligned.

5 CONCLUSION

We have described how to prefilter directional opacity for BVH
nodes using O(NT) time and storage, and demonstrated that pre-
filtering both reduces the variance of occlusion queries, and makes
ray intersection cost independent of geometric complexity for rays
with large differentials.

As short term future work, we plan to further optimize the pre-
filtering and storage of opacity. Our current implementation renders
opacity cubemaps by projecting child nodes using a software ray-
tracer. It would probably be faster to project multiple nodes in par-
allel on the GPU. It might also be possible to use a lookup table for
opacity based on canonical configurations of child nodes. Making
prefiltering as fast as possible will be important for dynamic ge-
ometry, where the BVH would need to be updated or rebuilt every
frame. As mentioned, we expect spherical harmonics compression
of the opacity cubemaps to be very effective.

As longer term work, it should be possible to automatically esti-
mate the correlation height K, perhaps using measurements of geo-
metric connectivity. K could then vary locally over a scene. We are
also interested in supporting other types of secondary ray queries
involving color as well as opacity, such as indirect diffuse and sub-
surface scattering.

6 ACKNOWLEDGMENTS

At Disney we wish to thank Joe Marks for supporting this research,
and David Hermanson and Chuck Tappan for providing the test
scenes. We also thank Dave Edwards for numerous discussions,
and the anonymous reviewers for their helpful comments.

REFERENCES

[1] J. Amanatides. Ray tracing with cones. ACM SIGGRAPH 1984,
18(3):129–135, 1984.

[2] L. Bavoil, S. P. Callahan, and C. T. Silva. Robust Soft Shadow Map-
ping with Backprojection and Depth Peeling. Journal of Graphics
Tools, 2008.

[3] M. Bunnell. Dynamic ambient occlusion and indirect lighting. GPU
Gems, 2:223–233, 2005.

[4] R. Cook, J. Halstead, M. Planck, and D. Ryu. Stochastic simplification
of aggregate detail. International Conference on Computer Graphics
and Interactive Techniques, 2007.

[5] R. Cook, T. Porter, and L. Carpenter. Distributed ray tracing. ACM
SIGGRAPH 1984, pages 137–145, 1984.

[6] M. Garland and P. Heckbert. Surface Simplification Using Quadric
Error Metrics. ACM SIGGRAPH 1997, pages 209–216, 1997.

[7] J. Hasenfratz, M. Lapierre, N. Holzschuch, and F. Sillion. A survey
of Real-Time Soft Shadows Algorithms. Computer Graphics Forum,
22(4):753–774, 2003.

[8] P. Heckbert and P. Hanrahan. Beam tracing polygonal objects. ACM
SIGGRAPH 1984, 18(3):119–127, 1984.

[9] E. Hubo, T. Mertens, T. Haber, and P. Bekaert. The quantized kd-tree:
efficient ray tracing of compressed point clouds. IEEE Symposium on
Interactive Ray Tracing, IEEE, pages 105–113, 2006.

[10] H. Igehy. Tracing ray differentials. ACM SIGGRAPH 1999, pages
179–186, 1999.

[11] J. Kautz, J. Lehtinen, and T. Aila. Hemispherical rasterization for
self-shadowing of dynamic objects. Proceedings of the Eurographics
Symposium on Rendering, pages 179–184, 2004.

[12] J. Kontkanen and S. Laine. Ambient occlusion fields. I3D 2005, pages
41–48, 2005.

[13] S. Laine, T. Aila, U. Assarsson, J. Lehtinen, and T. Akenine-Moller.
Soft shadow volumes for ray tracing. ACM SIGGRAPH 2005, pages
1156–1165, 2005.

[14] T. Lokovic and E. Veach. Deep shadow maps. ACM SIGGRAPH 2000,
pages 385–392, 2000.

[15] D. Mitchell. Consequences of stratified sampling in graphics. ACM
SIGGRAPH 1996, pages 277–280, 1996.

[16] F. Neyret. Modeling, Animating, and Rendering Complex Scenes Us-
ing Volumetric Textures. IEEE Trans. Vis. Comput. Graph., 4(1):55–
70, 1998.

[17] R. Overbeck, R. Ramamoorthi, and W. Mark. A Real-time Beam
Tracer with Application to Exact Soft Shadows. Proceedings of the
Eurographics Symposium on Rendering, 2007.

[18] Pixar. Prman application note: Point-based approximate ambient oc-
clusion and color bleeding. 2006.

[19] T. Porter and T. Duff. Compositing digital images. ACM SIGGRAPH
1984, pages 253–259, 1984.

[20] Z. Ren, R. Wang, J. Snyder, K. Zhou, X. Liu, B. Sun, P. Sloan, H. Bao,
Q. Peng, and B. Guo. Real-time soft shadows in dynamic scenes using
spherical harmonic exponentiation. ACM SIGGRAPH 2006, pages
977–986, 2006.

[21] T. Ritschel, T. Grosch, J. Kautz, and S. Müller. Interactive Illumina-
tion with Coherent Shadow Maps. Proceedings of the Eurographics
Symposium on Rendering, 2007.

[22] S. Rusinkiewicz and M. Levoy. QSplat: a multiresolution point ren-
dering system for large meshes. ACM SIGGRAPH 2000, pages 343–
352, 2000.

[23] P. Shirley, C. Wang, and K. Zimmerman. Monte Carlo techniques for
direct lighting calculations. ACM Transactions on Graphics (TOG),
15(1):1–36, 1996.

[24] P. Sloan, J. Kautz, and J. Snyder. Precomputed radiance transfer for
real-time rendering in dynamic, low-frequency lighting environments.
ACM SIGGRAPH 2002, pages 527–536, 2002.

[25] I. Wald, S. Boulos, and P. Shirley. Ray Tracing Deformable Scenes
using Dynamic Bounding Volume Hierarchies. ACM Transactions on
Graphics, 26(1):6:1–6:18, Jan. 2007.

[26] I. Wald, P. Slusallek, C. Benthin, and M. us Wagner. Interactive Ren-
dering with Coherent Ray Tracing. In Proceedings of EUROGRAPH-
ICS, pages 153–164, 2001.

[27] M. Wand and W. Straßer. Multi-Resolution Point-Sample Raytracing.
Graphics Interface Proceedings 2003, 2003.

[28] L. Williams. Pyramidal parametrics. In ACM SIGGRAPH 1983, pages
1–11, 1983.

[29] A. Woo, P. Poulin, and A. Fournier. A Survey of Shadow Algorithms.
IEEE Computer Graphics and Applications, 10(6):13–32, nov 1990.

[30] F. Xie, E. Tabellion, and A. Pearce. Soft Shadows by Ray Tracing
Multilayer Transparent Shadow Maps. Proceedings of the Eurograph-
ics Symposium on Rendering, 2007.

[31] S. Yoon, C. Lauterbach, and D. Manocha. R-LODs: fast LOD-based
ray tracing of massive models. The Visual Computer, 22(9):772–784,
2006.

Figure 10: Quality comparison of prefiltering methods to a reference solution shown in the leftmost column. The DC and Ad-hoc methods
are less accurate than the Cubemap method but also require less memory. The Ad-hoc method produces overly dark shadows.

