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Abstract

Resolving simultaneous impacts is an open and significant problem
in collision response modeling. Existing algorithms in this domain
fail to fulfill at least one of five physical desiderata. To address
this we present a simple generalized impact model motivated by
both the successes and pitfalls of two popular approaches: pair-wise
propagation and linear complementarity models. Our algorithm is
the first to satisfy all identified desiderata, including simultaneously
guaranteeing symmetry preservation, kinetic energy conservation,
and allowing break-away. Furthermore, we address the associated
problem of inelastic collapse, proposing a complementary general-
ized restitution model that eliminates this source of nontermination.
We then consider the application of our models to the synchronous
time-integration of large-scale assemblies of impacting rigid bod-
ies. To enable such simulations we formulate a consistent frictional
impact model that continues to satisfy the desiderata. Finally, we
validate our proposed algorithm by correctly capturing the observed
characteristics of physical experiments including the phenomenon
of extended patterns in vertically oscillated granular materials.
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1 Introduction

Modeling the dynamics of sustained contact (resting, sliding) and
of instantaneous impact (transient collisions, bouncing) is a fun-
damental thread of research in graphical simulation [Hahn 1988;
Baraff 1989; Mirtich and Canny 1995; Witkin and Baraff 2001].
We focus on the open problem of modeling multi-impact, where ei-
ther as a result of time-discretization or by consequence of formu-
lation, we are asked to simultaneously resolve multiple collisions
occurring at an instant. Models (e.g., sustained contact) and meth-
ods (e.g., penalty) that require finite time intervals to act are not
considered here.

Consider arrangements of three balls at the instant they all collide:

Before Pre-impact Post-impact After

Bernoulli’s
Problem

Newton’s
Cradle

In each case, leaving pre-impact velocities unchanged leads to pen-
etration. These velocities must therefore be altered via instanta-
neous impulses to avoid penetration, i.e., to become feasible. What
does physics tell us about the requisite impulses and the attendant
post-impact velocities?

(BRK) Break away. Bodies that were previously in contact may
break away from each other as a result of impact. This
might occur as an immediate consequence of the impact, as in
Bernoulli’s Problem, or it may be the result of shock propaga-
tion—a sequence of ordered events occurring at an instant—
as in Newton’s Cradle.

(SYM) Symmetry preserved. Spatial symmetries (e.g., about a
reflection line) that exist in pre-impact configurations should
also exist in post-impact configurations. After all, in an
ideal system, what factor breaks such a symmetry [Bernoulli
1742]? As depicted above, both Bernoulli’s Problem and
Newton’s Cradle are symmetric about the horizontal bisector.

(KIN) Energy bounded. Elastic impact (cr = 1) conserves ki-
netic energy. Inelastic impact under a coefficient of restitu-
tion (0 ≤ cr < 1) reduces kinetic energy. Barring the esoteric
case cr > 1, kinetic energy does not increase.

(MOM) Momentum conserved. Because impacts are internal to
the (closed) system of bodies, total momentum is conserved.

(ONE) One-sided impulses. Impulses may push bodies apart but
not pull them together—the so-called “no-velcro” condition.

These five physical desiderata define our notion of a correct algo-
rithm for instantaneous impact. Given these goals, how well do
existing families of models perform?

MODEL (BRK) (SYM) (KIN) (MOM) (ONE)
Our model • • • • •

LCP X • • • •
Gauss-Seidel • X • • •

Jacobi • • X • •

Table 1: Multi-impact feature chart: Physics demands a great deal from
a multi-impact solution, and previous models punt on one goal or another.

We summarize the answer in Table 1. Unfortunately, existing mod-
els, taxonomized by their use of a linear complementary problem
(LCP), Gauss-Seidel, or Jacobi structure (§3), fail to satisfy either
break-away, symmetry preservation, or kinetic energy conserva-
tion.

Contributions We propose a generalized reflections multi-
impact operator that satisfies all five desiderata. In its simplest inter-
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pretation the approach we will present amounts to a careful combi-
nation of the LCP and Gauss-Seidel formulations. And while form-
ing hybrids of two methods is often a recipe for aggregating flaws,
in this case, the resulting generalized reflection operator provably
fulfills all desiderata.

Practical implications Beyond the satisfaction of capturing the
inherent beauty of the physical laws, the fulfillment of the desider-
ata offers important practical benefits:

Breaking contact is an experimentally validated and expected be-
havior in stiff impact, as in the propagation of a shock in Newton’s
Cradle: impact from the leftmost ball propagates, traversing the
chain, until the rightmost ball breaks away. On high-speed film it
is observed that the propagation is effectively instantaneous, in that
it traverses the domain at time scales separated by orders of magni-
tude from the gross dynamics.

t0 t1 t2 t0 t1 t2

Figure 1: Symmetry preservation requires a box dropped face-first
onto a floor to bounce straight back up (left); symmetry breaking
can manifest in unexpected ways, as with Gauss-Seidel (right).

Shocks waves are observed to propagate through contacting media
in a time-ordered [Hascoët et al. 1999; Pudasaini and Kröner 2008],
symmetry-preserving [Bernoulli 1742; Brogliato 1999] manner.
Artificial symmetry breaking can yield unexpected results. Con-
sider the simple canonical case of a rigid box dropped face-first
onto a horizontal floor. At impact, standard box/box collision
routines detect all four face vertices as colliding. Constraints are
then generated by assigning these corner vertices the floor normal.
Since the projection of the box’s pre-impact velocity (i.e., its rigid-
body twist) onto all four constraint normals is identical, the box’s
post-impact velocity should retain this symmetry and thus bounce
straight back up (Fig. 1, left). Post-impact velocities that violate
this symmetry, but otherwise satisfy all four remaining desiderata,
contain non-zero angular velocity components that cause the box
to incorrectly fly away along an oblique trajectory (Fig. 1, right).
More generally, all symmetries between pre-impact velocities and
constraints should be preserved by post-impact velocities.

Bounded energy, in both the conservative (cr = 1) and dissipa-
tive (cr < 1) regimes, leads to stable simulations. Energy behav-
ior (whether conservative or dissipative) that remains independent
of evaluation order and permutation of degrees of freedom (DoFs)
provides more consistent simulations. Here we develop a model
that guarantees bounded energy for the instantaneous resolution of
simultaneous impacts.

Overview Our story begins by considering a single instant in
time. We first explore the uniqueness of solutions in the case of
multiple impacts (§2). Through a careful analysis of existing mod-
els (§3) we then arrive at our new generalized reflections operator
(§4). In the presence of restitution, inelastic collapse challenges
termination of this and other impact models. However, we show
how such collapse can be entirely avoided with the application of a
simple energetic restitution model (§5). To conclude our instanta-
neous story we present a compatible friction formulation (§6) and a
scalable numerical implementation (§7).

While the instantaneous story reveals the inherent beauty of the un-
derlying physics, any practical application must consider integra-
tion over finite amounts of time. The extension to handle this poses

real challenges (§8). We address some of these, which leads us to
propose a collision time-integration algorithm (§8.2) that is applica-
ble to rigid body simulation and preserves all of the desiderata pre-
sented earlier. To validate the method we consider a wide range of
benchmark examples (§9, §10, and §11). Finally, looking forward,
we conclude with a discussion of limitations and open questions
that this work raises (§12).

2 Impact

Impacts and contact occur whenever we impose one-sided con-
straints between objects or DoFs. A constraint is expressed by an
inequality gi(q) ≥ 0, where the constraint function gi : Q → R
maps each configuration q ∈ Q to a non-negative number iff q is
admissible. Trajectories, q(t) ∈ Q, are then required to be non-
negative, gi(q(t)) ≥ 0, for all time t ∈ [0, T ].

Our story takes place at instants where objects touch, i.e., gi(q) =
0. Differentiating the constraint with respect to time then gives

∇gi(q)T q̇ ≥ 0. (1)

We cannot sustain a velocity opposing the normal∇gi(q).

Contact treats the case∇gi(q)T q̇ ≥ 0 when gi(q) = 0.

Impact treats the case ∇gi(q)T q̇− < 0 when gi(q) = 0. Here the
pre-impact velocity q̇− opposes a constraint normal, necessitating
an impulsive change to yield a post-impact velocity q̇+ satisfying
(1).

Isolated impact(s) At an instant when exactly one constraint ex-
periences impact, q̇+ is uniquely determined from conservation of
momentum by the (cr scaled) reflection

∇g(q)T q̇+ = −cr ∇g(q)T q̇−. (2)

Two cases have special properties: elastic impact (cr = 1) con-
serves energy; purely inelastic impact (cr = 0) dissipates more
energy than any other momentum-respecting response.

At an instant when two constraints experience impact, we might get
lucky with an easy case: if the normals ∇g1(q) and ∇g2(q) are
orthogonal then each constraint is safely isolated as above. Two
independent collisions across the room from each other, for exam-
ple, possess orthogonal normals. This lucky strike generalizes to n
simultaneous impacts, when all n normals are mutually orthogonal.

Multi-impact A more interesting case occurs at the instant where
n constraints experience impact, with general (not necessarily or-
thogonal) constraint normals∇g1(q), . . . ,∇gn(q). This is the typ-
ical situation when multiple bodies collide at once, when a body
collides against another with multiple points of contact, or when a
particle collides against a kink of an enclosing boundary.

In the elastic case the core properties of elastic impact appear to
delimit, but not uniquely pin down, the impulse. This issue is
raised in multiple works [Moreau 1988; Ivanov 1995; Brogliato
1999; Chatterjee and Ruina 1998; Glocker 2004] that analyze the
time-continuous setting. In essence, we understand how a particle
bounces off of a wall, but not how it bounces off of an arbitrarily-
shaped corner. Since core conservative properties do not uniquely
prescribe impact at a kink, we seek a principled way of choosing
one such canonical outbound trajectory out of the myriad options.

The resolution of multi-impact is thus tricky. Yet, it would be dan-
gerous to treat multi-impact as a degenerate case, since in prac-
tice the resolution of multiple impacts is the typical case. For



example, (a) when synchronous time stepping methods advance,
all constraints violated en route are treated as simultaneous colli-
sions [Bridson et al. 2002]; (b) asynchronous time of impact (TOI)
methods are used to compute the motion of huge, multi-body sys-
tems [Lubachevsky 1991], here the probability of multiple simul-
taneous impacts increases with problem size; (c) for dissipative
physical systems, such as those with cr < 1, the average time be-
tween collisions gradually decreases, consequently the probability
of multi-impact increases (until ultimately a stable sustained con-
tact forms).

3 Simultaneity vs. Propagation

Existing multi-impact models fall into two categories [Baraff
1989]: they focus on either simultaneity or propagation, as exem-
plified by Bernoulli’s and Newton’s problems, respectively.

Before impact After impact

Figure 2: Matryoshka Dolls: A set of dolls dropped on a table
rebounds as a solid object with LCP due to lack of break-away (left
doll) but separates with Generalized Reflections (right doll).

3.1 Simultaneity

The Linear Complementarity Program (LCP) approach to multi-
impact begins by determining the active constraint set A(q) = {i :
gi(q) = 0}, and then requires the impact-level Signorini-Fischera
condition [Moreau 1983; Baraff 1989; Stewart 2000]

0 ≤ λ ⊥ GT
A q̇+ ≥ −cr GT

A q̇−, (3)

where GA is the matrix with columns {∇gi(q) : i ∈ A}, λ ∈ R|A|
is the vector of impulse coefficients, and x ⊥ y is the complemen-
tarity condition xiyi = 0, ∀i. Because GA is not generally full-
rank, the λ satisfying the Signorini-Fischera condition is not neces-
sarily unique; nevertheless, when scaled by the inverse mass matrix
M−1, this impulse leads to a unique post-impact velocity

q̇+ = q̇− + M−1GAλ.

Benefits and failures of LCP As the LCP considers only span-
ning spaces (span GA), ignoring the choice of basis vectors (∇gi),
it is geometric in the sense of being basis- (or coordinate) inde-
pendent. Concretely, it (a) produces a result independent of DoF or
sampling permutations and (b) preserves symmetry by construction.

Furthermore, for purely inelastic impact (cr = 0), the LCP for-
mulation produces the unique solution that maximally dissipates
normal velocities [Moreau 1983], satisfying all desiderata.

Indeed, LCPs satisfy one-sidedness (ONE) for any cr , by construc-
tion. This, then, serves to highlight the distinction between one-
sidedness (ONE) and break-away (BRK). For in the elastic case
(cr = 1), LCPs do not satisfy (BRK) [Chatterjee and Ruina 1998;
Glocker 2004]: the LCP solution of the elastic Newton example

exhibits sticking where we expect break-away (see Fig. 3). Intu-
itively, the LCP solution reflects each relative velocity; when the
relative velocity is zero (sustained contact), the reflected relative
velocity remains zero, so that LCP has pinned the constraint, in-
stead of allowing breaking contact. Put precisely, LCPs “stick” by
producing zero (rather than positive) post-impact relative veloci-
ties, ∇gi(q)T q̇+ = 0, at contact points where corrective impulses,
λi > 0, have been applied. As a consequence, LCP solutions do
not capture shock-propagation effects.

Thus, while LCPs might be the ideal solution for purely inelastic
multi-impact, as given below1 in Alg. 1, LCPs do not and can not
correctly treat multi-impact in general.

Algorithm 1 Inelastic Impact(q, p,A)

1: G← GA(q)

2: λ← argminy

(
1
2
(Gy + p)T M−1(Gy + p) : y ≥ 0

)
3: return λ

LCP’s behavior for our two model problems summarizes its
strengths and weaknesses as a method for elastic impact. LCP pro-
duces the correct behavior for Bernoulli’s problem because it pre-
serves symmetry. However, LCP produces incorrect sticking for
Newton’s Cradle (see Fig. 3).

3.2 Propagation

Pairwise propagation models leverage the well-posed behavior and
computational ease of resolving a single-point impact. Dating
back to the foundations of impact mechanics [Maclaurin 1742;
D’Alembert 1743], these methods sequentially resolve each col-
lision in isolation. Because each collision is treated separately,
the communication between collisions occurs explicitly when a
previously-treated collision is revisited; in general, propagation
models iterate multiple times over the full set of active collisions.

Some variants use random ordering for the sequence [Ivanov 1995],
others invoke physical [Chatterjee and Ruina 1998] or geomet-
ric [Johnson 1976; Ivanov 1995] considerations. Two popular vari-
ants [Bridson et al. 2002; Guendelman et al. 2003] mimic the styles
of the simplest iterative linear solvers: the Jacobi variant first com-
putes every pairwise impulse, and then applies them all [Maclaurin
1742], whereas the Gauss-Seidel variant computes and applies each
impulse in turn [D’Alembert 1743; Johnson 1976; Ivanov 1995;
Chatterjee and Ruina 1998]. All of these variants are not to be con-
fused with the similar-sounding names of iterative splitting methods
used to solve LCPs [Cottle et al. 1992; Erleben 2007].

Benefits and failures of pairwise propagation Pairwise propa-
gation models enable both breaking contact and shock-propagation.
However, all such methods either violate energy conservation, e.g.,
Jacobi (see Sec. 9), leading to large instabilities or excess dissipa-
tion, or destroy symmetry, e.g., Gauss-Seidel (see Fig. 1, right), and
thus produce non-physical and inconsistent trajectories (see also
Figs. 3, 7, and 5).

Recap Thus far, we have observed that the standard simultaneous
LCP impact model is only well-behaved for cr = 0, but otherwise
is prone to sticking. On the other hand, while pairwise propaga-
tion models recover break-away behavior, they violate either energy
conservation or symmetry preservation.

1The inelastic LCP given by (3) with cr = 0 is the KKT optimality
condition [Boyd and Vandenberghe 2004] for the equivalent minimization
employed in Alg. 1, line 2. We denote the system’s momentum as p = Mq̇.
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Figure 3: Simultaneous vs. propagation perspective: The simulta-
neous approach of LCP fails to capture the break-away of Newton’s
Cradle, while the Gauss-Seidel variant of pairwise propagation fails
to capture the symmetry of Bernoulli’s problem.

4 Simultaneity and Propagation

Generalized reflection We begin our development with a sim-
ple, yet critical, observation:

Lemma. In the special case where the approaching ve-
locity opposes all constraint-normal directions, the LCP
model generates a unique solution that is always free of
both sticking artifacts and feasibility violations, for any
0 ≤ cr ≤ 1.

Proof. The LCP in (3) generates a unique post-impact velocity for
all feasible problems [Cottle et al. 1992]. By assumption, all normal
velocities are initially negative. Then, by the Signorini-Fischera
condition,

GT
A q̇+ ≥ −cr GT

A q̇− > 0,

for all cr > 0.

In particular, for this special case, the LCP solution is a generalized
reflection, in the sense that the component of the velocity in the
subspace spanned by all pushing normal directions (i.e, directions
along which an impulse is applied) is negated (and scaled by cr),
while the component in tangential directions remains untouched.
The solution also inherits the energy and symmetry preservation
properties inherent to the LCP formulation.

Generalized reflections impact operator During multi-impact,
the incoming velocity will generally oppose some, but not all nor-
mal directions. Let these opposing normals define a violator subset
of the active set of constraints, V ⊂ A. If we temporarily ignore the
remaining active constraints and apply LCP just to the violator sub-
set, our special-case generalized reflection, described above, yields
the unique impulse that recovers all core properties. This feasible
“post-impact” velocity no longer opposes the violator normals.

However, having ignored the remaining active constraints, this ve-
locity may not be feasible with respect to the full set of original
constraints. Thus, again, we gather the set of opposing normals,
apply the generalized reflection, and repeat (Alg. 2).

This resulting Generalized Reflections (GR) impact operator con-
sisting of back-to-back special-case impulses, directly corresponds
to the view of a shock wave as an advancing front of constraint
violations. A shock wave can be viewed as an instant in time—
positions are fixed—during which a moving front of velocity mod-
ifications sweeps over the material. In particular, feasibility is sat-
isfied everywhere except on the moving front, where constraint-
restoring impulses induce new violations ahead of the front and thus
advance the front forwards.

Algorithm 2 Generalized Reflection(q, p,A, cr)

1: ε← 1 + cr
2: λ← 0
3: p̃← p
4: while true do
5: V← ∅
6: for k in A do
7: if∇gk (q)T M−1p̃ < 0 then
8: V← k
9: end if

10: end for
11: if V 6= ∅ then
12: G← GV(q)

13: λ̃← argminy

(
1
2
(Gy + εp̃)T M−1(Gy + εp̃) : y ≥ 0

)
14: p̃← p̃ + Gλ̃
15: λ← λ+ λ̃
16: else
17: return λ
18: end if
19: end while

5 Restitution and Inelastic Collapse

Pairwise propagation methods are well known to suffer from poor
convergence whenever cr < 1 is applied; in the extreme case, they
cannot converge in finite iterations due to inelastic collapse [Baraff
1989; McNamara and Young 1994]. A simple exercise is to observe
that for Newton’s Cradle with cr = 0, each iteration halves the
negative relative velocity, thus by Zeno’s Paradox (“Achilles and
the tortoise”) finite iterations cannot reach a feasible velocity.

More generally, inelastic collapse extends well above the fully in-
elastic case of cr = 0 (see Fig. 4, (a) and (b)). Indeed, the
range of cr for which inelastic collapse can occur increases as the
size of an impacting system grows (see Fig. 4, (c)), and quickly
approaches unity as the number of colliding bodies become suf-
ficiently large [Bernu and Mazighi 1990; McNamara and Young
1994]. Thus inelastic collapse is effectively unavoidable for the
large-scale colliding systems that we consider.

In the numerical setting, round-off somewhat ameliorates this issue
and the iterative process generally terminates [Chatterjee and Ruina
1998]. Relying on round-off is not acceptable, however. Moreover,
we observe that convergence behavior consistently worsens in pro-
portion to the decrease in cr (see Fig. 4, (d)). While iterating the
generalized-reflection operator with a cr < 1 would require fewer
iterations than pairwise propagation, GR is nevertheless a propaga-
tion approach, and so it would not escape inelastic collapse.

An energetic restitution model safe from inelastic collapse
Instead of iteratively resolving impacts at cr < 1 and suffering the
consequences of inelastic collapse, we propose a simple and, to our
knowledge, novel energetic restitution model that obtains consistent
convergence and dissipation behaviors across all cr values. We first
observe that purely inelastic multi-impact is well-posed and solu-
ble using the standard LCP formulation [Moreau 1983; Anitescu
and Potra 1997; Stewart 2000], i.e., (3) with cr = 0, yielding q̇+

0 .
Similarly, elastic multi-impact is unaffected by collapse; applying
the generalized reflection operator to the elastic case we obtain q̇+

1 .
We view cr as the interpolant between the two and thus obtain

q̇+ = (1− cr)q̇+
0 + crq̇+

1 .

Notice that this definition of cr now gives the exact interpolation
between the maximum (physically) allowable dissipation and total
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Figure 4: The danger of propagation with cr < 1: Consider the three-ball Newton’s Cradle example with cr = 0; a single pairwise iteration halves
the negative relative velocity at a constraint, implying that pairwise iterations only terminate in the limit with a fixed outgoing velocity. In (a) we plot the
post-response velocities of the three balls as a function of cr . Note that a common limiting velocity occurs across a significant range of cr values, suggesting
that within this span, pairwise iterations will require an infinite number of iterations. This is indeed the case as illustrated in (b), where we plot the number
of iterations required to reach a collision free state as a function of cr . For cr < 0.0717 the graph oscillates at saturation of maximum iterations – if we
performed computations with unlimited precision, an infinite number of iterations would be required. This is known as “inelastic collapse”. Even worse, the
range of dangerous cr values increases with the number of impacting bodies. Consider (c) where, following the analysis of Bernu et al. [1990], we plot the
value of cr at which inelastic collapse occurs as a function of the number of balls in a Newton’s cradle. Observe that the range quickly approaches cr = 1
(the same effect is observed more generally). Finally in (d) we show that in actual numerics, the cost of pairwise propagation (here with pairwise Gauss-Seidel
for a box of 10,000 balls) correspondingly blows up as cr decreases.

conservation of energy. In the special case of an isolated impact,
we recover the classical isolated restitution model (2).

By construction this interpolation satisfies (KIN), (MOM), (ONE),
(SYM), and (BRK). Feasibility follows from the linearity of the
impact constraints.

6 Friction

As in contact, friction is a critical and often dominant aspect of
transient collision behavior [Brogliato 1999]. We incorporate im-
pulsive friction (Alg. 3) while preserving the physical desiderata.
The short time-scales of impact simplify the computation.

The impact solution, λ, gives the magnitude of the normal impulse
and thus, in analogy to frictional contact, defines local, pointwise
Coulomb inequalities, ‖fk‖ ≤ µkλk, for friction impulse feasibil-
ity at each collision point k. In the instantaneous setting, as with
normal directions, the directions of tangential dissipation are effec-
tively fixed and thus the maximal dissipation of friction [Stewart
2000] is reduced to impulses applied along a single fixed tangential
direction per collision point.

Instantaneously we have

q̇+ = q̇− + M−1Gλ+ M−1Dβ, (4)

where λ is the impact solution, D is the generalized basis of in-
stantaneous friction directions that oppose velocity at each collision
point, and β is the vector of corresponding frictional impulse mag-
nitudes. Maximal dissipation then gives the frictional impulses as

β = argmin
z

zT DT
(

q̇− + M−1Gλ+ M−1Dz
)

s.t. 0 ≤ z ≤ diag(µ)λ.
(5)

To compute the friction basis D we let Γk denote the relative veloc-
ity Jacobian [Kaufman et al. 2008] so that vk = Γkq̇− ∈ R3 gives
the relative velocity at collision point k. Extracting the relative ve-
locity local tangent component, vt,k, we then generate a single fric-
tion basis contribution per collision point, dk = ΓT

k vt,k/‖vt,k‖.
The generalized friction basis follows as D = (d1, ..., dm).

Solving maximal dissipation globally guarantees monotone energy
decay at all active contacts thus ensuring (KIN), our tangent basis
choice preserves (MOM), while basis independence continues to
maintain (SYM). We then inherit (BRK) and (ONE) from GR.

Algorithm 3 Friction(q, p,A, λ)

1: G← GA(q)
2: D← DA(q, p)
3: β ← argminz(zT DT M−1(p+Gλ+Dz) : 0 ≤ z ≤ diag(µ)λ)
4: return β

7 Numerical Implementation

Our method requires the solution of numerous LCPs. Resolving
even a single, large-scale LCP has long been considered computa-
tionally burdensome and has thus motivated many approximations
and failsafes [Erleben 2007; Harmon et al. 2008]. We follow the
observation that each impact LCP problem corresponds to the opti-
mality conditions of a convex Quadratic Program (QP) [Boyd and
Vandenberghe 2004]. In particular, we solve the large-scale, sparse
impulse QP, dual to the LCP, employing an interior-point solver
with a swappable linear backend. As we will see in §11 this leads to
practical timings for exact LCP solves, even for very large (> 2M
DoFs and > 2M constraints) impact systems.

QP solution The constraint gradients forming the linear con-
straints at each such solve are highly sparse2. To exploit the
sparse problem-structure of these QPs we employ an interior-point
method. Here the computational crux is to robustly and efficiently
solve the many repeated inner-loop linear, KKT systems [Boyd and
Vandenberghe 2004]. We use the Ipopt solver [Wächter and Biegler
2006] where the ability to customize our choice of an adaptive,
swappable suite of linear-solver backends far outweighs the over-
head of employing a general-purpose code. In particular, we em-
ploy MA27 [HSL 2001] as our first-line, linear solver with MUMPS
[Amestoy et al. 2001; Amestoy et al. 2006] invoked in the rare event
that MA27 fails to solve a linear system.

For the impact QP, we observe that imposing non-negativity as a
bound constraint yields a significant performance increase over im-
posing non-negativity as an affine constraint. In the case of a single
friction disk sample, the Coulomb constraint similarly reduces to a
bound constraint, which therefore admits the same optimization.

QP solvers and scalability While scaling our method to larger
simulations, we tested a number of algorithms for solving the im-

2Non-zeros in each column are generally restricted to the DoF stencil of
any two in-contact surface patches.



pact and friction QPs. For QPs with order 100 constraints, we find
that the QL [Schittkowski 2005] implementation of the Goldfarb
and Idnani [Goldfarb and Idnani 1983] dual active set method per-
forms admirably. In fact this is what we have used for the small sim-
ulations in section 9. QL is a dense method, however, and as our
simulations approach order 1,000 constraints, storing the normal
equations in a dense manner grows computationally prohibitive.

For QPs of order 1,000 to 10,000 constraints, we tested an operator-
based non-negative least-squares (NNLS) [Lawson and Hanson
1974] approach that avoids the normal equations altogether. We
employ a two-metric, projected-descent solver [Friedlander 2007]
that enables warm starting and requires only the evaluation of
operator-based callbacks for multiplications of impulse subvectors
by submatrices of the constraint gradient. As we scale to larger con-
tact problems, however, the NNLS approach requires increasingly
aggressive applications of Tikhonov regularization, degrading over-
all performance compared to the interior point approach.

8 From One Instant to Finite Time

Up until this point, our intentionally myopic discussion has focused
exclusively on a single instant in time. We have developed an in-
stantaneous multi-impact operator that, for the first time, is able to
fulfill five important physical principles that apply to instantaneous
impact. A natural question is what happens in the surrounding in-
terval of time, and in particular whether an algorithm that satisfies
the five principles of instantaneous impact fares better than others
when employed as one component of a finite time integrator. In the
remainder of this paper we explore this question.

As in the instantaneous picture, finite time behavior can be stud-
ied in terms of break-away, symmetry, momentum, the no-velcro
condition, and energy conservation/boundedness. The last criterion
however raises a subtle point.

8.1 Finite Time Energy Conservation

To simplify the discussion consider purely elastic restitution (cr =
1). In the instantaneous picture, positions were fixed, only mo-
menta varied, and we sought exact conservation of kinetic energy.
In the finite time picture, both configurations and momenta evolve,
and we consider instead the requirement of exact conservation of
the Hamiltonian, or total energy, over extended durations of sim-
ulation, which we denote (HAM). For inelastic impact (cr < 1)
we relax (HAM) to allow for bounded rather than conserved total
energy.

Do impact operators satisfying (KIN) lead to integration algorithms
satisfying (HAM)? When we combine instantaneous impact re-
sponse with finite time integration, we must distinguish between
three related notions of “energy behavior:”

• where the long-term Hamiltonian conservation of the dis-
crete time integrator alone (without impact response) satisfies
(HAM);

• whether the impact response instantaneously obeys (KIN);

• where the long-term Hamiltonian conservation of both pieces
combined satisfies (HAM).

If either the integrator has poor energy behavior, or the impact re-
sponse violates (KIN), it is exceedingly unlikely that their aggre-
gate will have good behavior. On the other hand, if both exactly
conserve energy, their combination will as well. In the remainder
of this paper, we explore the latter case, identifying two classes of

physical systems where it is possible to combine GR with energy-
momentum preserving integrators. We then discuss inherent limi-
tations and pose further avenues for exploration.

8.2 Synchronous Time Integration

In our finite time exploration we consider the typical case of syn-
chronous or fixed-time step collision integration. At the begin-
ning of each time-step we gather all constraints expected to be vi-
olated along the course of a fixed-size time-step and then resolve
all of them instantaneously and simultaneously. We do this by
applying our chosen method (GR, Gauss-Siedel, Jacobi, or LCP)
for Elastic Impact interpolated, by our restitution model,
with Inelastic Impact. Friction is then applied, followed
by a fixed time-step with an unconstrained, free-flight integra-
tor, denoted FF Integrator. The resulting collision-integration
method is given below in Alg. 4.

While the solution of the maximal dissipation problem in im-
pact remains (as with contact) coupled to constraint resolution
forces [Kaufman et al. 2005], we will assume that most of the im-
pacts are sufficiently high-speed that it is not critical to find the
exact equilibrium between friction and contact forces. As such we
discretize in time by applying a single pass sequence of GR fol-
lowed by a maximal dissipation solve of the resulting QP in equa-
tion (5) above with λ given. If a more accurate friction solution is
needed then additional staggered iterations can be made [Kaufman
et al. 2008].

Algorithm 4 Collision Integrator(qt, pt, h, cr)

1: (q̃, p̃)← FF Integrator(qt, pt, h)
2: A← Get Active Set(q̃)
3: λ1 ← Elastic Impact(qt, pt,A)
4: λ0 ← Inelastic Impact(qt, pt,A)
5: λ← cr λ1 + (1− cr) λ0

6: β ← Friction(qt, pt,A, λ)
7: p+ ← pt + GA(qt)λ+ DA(qt, pt)β
8: (qt+1, pt+1)← FF Integrator(qt, p+, h)
9: return (qt+1, pt+1)

9 Case Study: 2D Billiard Balls

As a didactic starting point we consider frictionless billiard balls
(two translational DoFs) in two dimensions under linear potentials.
We employ Verlet [Hairer et al. 2002a] time integration, which for
this physical system exactly conserves both momentum and energy.
We consider friction in section 10. The ball-ball non-overlap con-
straint between 2D balls is easily formulated analytically. We com-
pare Jacobi, Gauss-Seidel, Generalized Reflections, and LCP for
elastic impact problems.

Symmetry in multi-impacts During a clean pool break, racked
balls disperse across the pool table in a nearly symmetric pattern.
We consider the “cleanest” possible pool-break, i.e., the outcome
of an impact subject to perfectly symmetric initial conditions. The
initial setup for this simulation is an exactly aligned rack of 55 balls
with an additional cue ball fired along the axis of symmetry. In
Fig. 5 we compare the results after ten seconds of simulation time
between GR and a Gauss-Seidel ordering.

Breaking contact in multi-impacts Consider a uniform grid of
balls colliding with a circular boundary. Unless the impact is per-
fectly inelastic, the grid is expected to scatter with a fountain-like



Initial con�guration GR Gauss-Seidel

Figure 5: The “cleanest” pool break: A perfectly symmetric, elastic pool
break is simulated for 56 balls, starting from symmetric initial conditions.
After ten seconds of simulation time GR retains the initial symmetries while
Gauss-Seidel orderings all generate unexpected, order-dependent results
(the right-hand figure shows one representative Gauss-Seidel simulation).
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G
R

LC
P

Figure 6: Sticky impacts: As in the 1D case, LCP’s inability to resolve
breaking contact introduces noticeable sticking artifacts in simulation (bot-
tom). Compare to the breaking splash generated by GR (top).

trajectory (see Fig. 6, top). Resolution of breaking contact is es-
sential to produce this expected behavior. Indeed, simulating this
system with LCP, and thus losing breaking contact, produces the
unexpected behavior of the entire mass of balls bouncing back up,
cohering together as a uniform, sticky material (see Fig. 6, bottom).
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Long-term kinetic energy
conservation In the plot
to the right we confirm the
exact kinetic energy conser-
vation of our collision in-
tegrator using LCP, Gauss-
Seidel, and GR as impact operators and note the characteristic poor
energy behavior of Jacobi. Here we plot the energy of a 9x9 grid
of balls, constrained in a drum, given initial random velocities, and
stepped at h = 10−2 in zero gravity.

GR/LCP Gauss-Seidel Jacobi

Figure 7: Long-term symmetry: Long-term trace of particle trajectories
for GR/LCP, Gauss-Seidel and Jacobi. GR, LCP, and Jacobi remain sym-
metric, while Gauss-Seidel breaks symmetry. Note that LCP does not suffer
from ‘sticking’ for this example, and so its solution does not differ from
GR’s. Jacobi’s trajectory quickly damps out due to parasitic dissipation.

Long-term symmetry conservation We place four balls in a cir-
cular enclosure with initial state symmetric about the vertical bi-
sector, and plot trajectories generated with the GR, LCP, Jacobi,
and Gauss-Seidel impact operators in the collision integrator (see
Fig. 7). In this example LCP does not exhibit sticking, therefore
the trajectories of GR and LCP coincide. Observe GR/LCP’s long-
term symmetry preservation. The GS trajectory breaks symmetry
upon the first impact. Jacobi’s trajectory preserves symmetry, but
rapidly dissipates to a crawl, evidenced by the short trace length.

10 Case Study: 3D Rigid Bodies

We now shift our focus to the simulation of rigid bodies with fric-
tion in three dimensions. For free-flight integration in SE(3) with a
linear gravitational potential we apply the Discrete Moser-Veselov
(DMV) integrator [Moser and Veselov 1991], which is exactly en-
ergy, momentum, and angular-momentum conserving for this spe-
cial case. In our implementation we employ a freely available
implementation of DMV [Hairer and Vilmart 2006]. Constraints
are obtained for boxes using the standard box-box routine [Smith
2006], while constraints for potentially non-convex mesh-mesh im-
pacts are obtained with the signed distance field based implemen-
tation in the freely available OpenTissue package [Erleben and
Dohlmann 2007]. As an acceleration broad-phase culling is per-
formed using a uniform spatial partition [Ericson 2004].

10.1 Long-Term Energy Conservation

When married to a discrete time integration method, the choice of
an instantaneous impact technique can lead to a harmonious part-
nership or a short-lived and explosive affair. In Fig. 8 we plot the
long-term total energy of DMV when paired with Jacobi, Gauss-
Seidel, and Generalized Reflections for three select simulations.
Jacobi’s failure to respect (KIN) quickly destabilizes the entire sim-
ulation, leading to a catastrophic failure. Gauss-Seidel and Gener-
alized Reflections, in contrast, act in concert with DMV to yield
constant Hamiltonians and stable simulations.

10.2 Long-term Symmetry Preservation

Similarly, pairing DMV with the wrong instantaneous impact tech-
nique can send a simulation on an asymmetric and meandering tra-
jectory. In Fig. 8 we plot traces of points on rigid bodies for the
same three simulations. The trajectories produced by DMV with Ja-
cobi and with Generalized Reflections mirror all spatial symmetries
in the initial conditions, while the trajectories due to Gauss-Seidel
quickly wander into disorder.

10.3 Long-term Angular Momentum Conservation

To verify conservation of (MOM), we place
two bunnies in a simulated teapot with a co-
efficient of restitution of cr = 0.8 and a co-
efficient of friction of µ = 0.5 and initialize
the system with zero net linear momentum and
nonzero net angular momentum. As this sys-
tem is closed, we expect both linear and an-
gular momentum to remain constant. Indeed,
evolving the system with GR and DMV using
a timestep of h = 0.01 we observe a max-
imum drift of 4.37 × 10−11 percent in each
component of angular momentum and an ab-

solute drift of 1.36 × 10−11 in each component of the linear mo-
mentum for 1000 seconds of simulation.
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Figure 8: (HAM) and (SYM) with DMV: Here we show the results of three simulations. Top: Eight cubes, initially touching, with symmetric outward
velocities constrained to lie in a large cube. There is no gravity in this simulation. Middle: A trefoil knot with threefold rotational symmetry is dropped on a
plane under gravity. Bottom: Two bunnies with 180 degree rotational symmetry are released under gravity in a box. Left: For each simulation, we plot traces
of points fixed on each body. Right: For each simulation, we plot potential (blue), kinetic (green), and total energy (red). Long term desiderata: Coupled
with a time integrator, Jacobi, to the left, respects (SYM) but drops (HAM) while Gauss-Seidel, in the middle, conserves (HAM) but destroys (SYM). Only
GR, on the right, satisfies both (HAM) and (SYM) when paired with DMV. To avoid ambiguity in selecting a vertical scale to display the Hamiltonian with, we
employ the natural scale defined by the (always positive) kinetic energy.

10.4 Controlled Dissipation

Our generalized restitution model, when paired with a discrete time
integration method, yields a predictable and controlled rate of dis-
sipation. To demonstrate this, we simulate 1,000 bunnies in a fixed
container with gravity using Generalized Restitution and DMV. As
we decrease the coefficient of restitution, we observe an attendant
controlled decrease in the long term energy dissipation (Fig. 9).
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Figure 9: Controlled Dissipation: As we decrease cr , the overall dissipa-
tion decreases in a controlled manner.

10.5 Break-Away and Restitution

Neglecting (BRK) can produce unexpectedly uneventful simula-
tions, even for systems subject to restitution effects. Dropping a
set of matryoshka dolls with cr = 0.8, the LCP model causes the
dolls to rebound as a single, solid object (Fig. 2, left doll). With the
Generalized Restitution model, in contrast, the dolls separate upon
first impact, revealing the interior matryoshkas (Fig. 2, right doll).

11 Scaling and Experimental Benchmarks

We now evaluate the scaling properties of our method in 2D and 3D
and benchmark against classical problems in granular media.

11.1 Related Methods in Granular Simulation

While our proposed algorithms enable the simulation of arbitrary
rigid body models, many of the following examples particularly fo-
cus on granular systems. Such examples enable us to consider cor-
rectness, efficiency, scaling, and emergent behavior in assemblies
(treated here as collections of rigid bodies) while allowing us to
validate large-scale simulations against experimental observations.

The simulation of granular materials has been broadly treated in
engineering and mechanics. Pöschel and Schwager [2005] provide
a comprehensive survey of current methods in the literature.

Within graphics research on granular simulation has largely focused
upon continuum-based models [Zhu and Bridson 2005; Lenaerts
and Dutré 2009; Narain et al. 2010; Alduán and Otaduy 2011] that
efficiently and convincingly capture the complex behaviors of gran-
ular flow. However, as noted by Narain et al. [2010], these methods
are unable to resolve the collisional behaviors of granular systems.

Alternately, a range of damped-spring-based interaction methods
[Miller and Pearce 1989; Luciani et al. 1995; Bell et al. 2005;
Alduán et al. 2009], originating in the discrete element and molec-
ular dynamic models of mechanics, have also been considered.
While effective for resolving slower contact modes, under impact
these methods must often deal with many of the same stability
issues commonly encountered in comparable, and more familiar,
penalty-based methods [Pöschel and Schwager 2005].



Figure 10: Scaling of our system: Here we show two sequences of configurations from large-scale, 1M-ball simulations in 2D. Impacts are frictionless
and elastic (i.e., cr = 1). Top (Drop): Spheres are initialized to a uniform square grid configuration, dropped from rest, under a gravitational potential of
magnitude 10. Bottom (Gas): Spheres are initialized to a uniform square grid configuration. Each sphere is assigned an initial, random, unit length velocity.
No external forces are exerted on the system.

Simulation DoFs
Integration DetectionDetectionDetection ImpactImpactImpact GR IterationsGR IterationsGR Iterations Overall ConstraintsOverall ConstraintsOverall Constraints

Simulation DoFs
avg avg max min avg max min avg max min avg max min

Drop 10K 20,402 0.0005 0.01 0.03 0.01 0.01 3.08 0.00 1 291 0 6,914 20,238 0
Drop 100K 200,978 0.0066 0.23 0.33 0.19 1.30 279.90 0.00 7 1,629 0 85,381 200,346 10,253
Drop 1M 2,004,002 0.0930 3.08 4.33 2.56 137.62 7,434.73 0.04 76 11,181 0 1,242,689 2,271,061 373,610
Random 10K 20,402 0.0005 0.01 0.07 0.01 0.00 0.09 0.00 1 5 1 147 9,720 0
Random 100K 200,978 0.0060 0.20 0.27 0.15 0.05 2.04 0.01 1 5 1 4,452 96,694 50
Random 1M 2,004,002 0.0854 2.61 3.19 2.32 1.67 22.76 0.10 2 6 1 135,417 968,392 6,933

Table 2: Timings: Performance statistics for balls constrained to a drum. For each simulation we report the wall-clock time (seconds) spent in unconstrained
integration, collision detection, and impact response per timestep. We report the min, max, and average time across all timesteps. We also report the number
of iterations spent in each GR solve, as well as the overall active set size. The system was integrated with a fixed timestep of 0.01s and employed the nonlinear
optimization package Ipopt to solve the impact QP. Timings were recorded with a single thread on a 3.33GHz Intel Core i7-975.

11.2 Scaling

Formulating our multi-impact problem as a QP and solving it in
a sparsity preserving manner enables our method to scale to large
problems composed of many DoFs in impact with one another. We
instrumented two example configurations, consisting of increas-
ingly larger numbers of frictionless spheres, all with unit radius,
subject to cr = 1, and constrained to stay inside a circular drum:

Drop examples are initialized to a uniform square grid configura-
tion and dropped from rest, under gravity.

Gas examples are likewise initialized to a uniform square grid con-
figuration. Each sphere is assigned an initial, random, unit length
velocity. No external forces are exerted on the system.

In both examples, note the preservation of large scale symmetries.
Timings and statistics for these examples are reported in Table 2.
A video of these simulations can be found in the supplementary
materials while configuration snapshots are shown in Fig. 10. Note
that the dominant cost, the solution of the impact QP, scales with
the number of constraints.

11.3 Granular Maxwell’s Demon

Dissipative impact plays an intriguing role in spontaneous sym-
metry breaking. An interesting example is the so-called Granular
Maxwell’s Demon. In analogy to Maxwell’s Demon, two identical
grids of balls are placed in a box separated from one another by
a partial-height partition. Driving the box’s floor at constant fre-
quency and amplitude all balls eventually “choose” one of the two

Figure 11: Maxwell’s Demon
demonstrates a dramatic conse-
quence of restitution behavior
(top to bottom). Balls placed
evenly in two sides of a vibrat-
ing box, split by a solid fence,
aggregate on one side due to
dissipative collisions. The setup
here simulates 288 unit mass
steel balls with cr = 0.6.

box partitions without the assistance of a demonic agent.

The standard explanation is that multiple dissipative collisions
“trap” particles preferentially on the side with more parti-
cles [van der Weele et al. 2001]. More particles colliding means
more dissipation due to the coefficient of restitution, keeping the
kinetic energy of the balls on the more populous side low. Simi-
larly, balls on the sparser side experience a lower collision rate and
thus their energy is not damped as quickly. Somewhat paradoxi-
cally, balls on the sparser side are thus more likely to cross over
to the trapping side than vice-versa; as the trapping side becomes
more loaded, this process accelerates via positive feedback.



Duplicating the experimental setup’s initial configuration we sim-
ulate the same effect using Generalized Reflections. Fig. 11
shows simulation snapshots of the granular Maxwell’s Demon phe-
nomenon. With initially symmetric positions and random initial
velocities, progressively more balls migrate to one side (the right
in this example) as expected. This provides one validation of our
proposed definition for the multi-impact coefficient of restitution.

11.4 Extended Patterns
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Figure 12: Extended Patterns experiment and GR Simulation: We sim-
ulated the experiments of Melo et al. [1994] across a range of parameters.
Top: In the left and middle columns we show side and top view simulation
snapshots and note a match with the experimentally obtained square, stripe,
and hexagonal patterns in the right column. Bottom: We also reproduce
the phase diagram from Bizon et al. [1998] showing the points that gener-
ated both the experimental results and the matching simulations. The phase
diagram is Copyright 1998 by The American Physical Society.

Molecular and crystalline assemblies play a critical role in systems
of interest in biology, chemistry and physics but are often difficult
and costly to study. To understand these phenomena scientists have
turned to simpler systems such as vibrated bins of granules [Um-
banhowar et al. 1996]. In this setting spontaneous, stable patterns
are observed [Melo et al. 1994]. The hope is that these systems can
be studied in analogy to crystalline and molecular structures and
thus elucidate otherwise complex behaviors.

The so-called extended patterns are emergent behaviors known to
be driven solely by floor vibrations, high-speed inelastic impacts
between granules, and corresponding frictional forces [Melo et al.
1994]. As such they are ideal computational benchmarks to exam-
ine both validation and efficiency. The challenges to simulate them
are directly in line with our goals: the generation of extended pat-
terns requires the accurate resolution of very-large collections of
rigid-bodies under high speed impact (and are thus not amenable to

continuum models), they require the accurate, scalable modeling of
multi-impact (simultaneous collisions are generic), restitution (in-
elasticity is required), and friction (without friction the patterns do
not emerge [Moon et al. 2004]) at large scales.

We first confirm that our algorithm captures the stable stripe, square
and hexagonal patterns experimentally observed in stability regions
of a phase diagram plotting driving amplitude vs. frequency. Du-
plicating the reported [Bizon et al. 1998] material restitution and
friction, packing ratios, amplitudes, and frequencies we obtain a
one-to-one correspondence with experimental results [Bizon et al.
1998] for all three patterns: hexagons at f∗ = 0.38 and Γ = 4.00,
squares at f∗ = 0.27 and Γ = 3.00, and stripes at f∗ = 0.44
and Γ = 3.00 (see Fig. 12). These parameters correspond to the
non-dimensionalized frequency and amplitude of the driving plate,
which are employed to reduce the dimensionality of the problem
search space. Note, as well, as seen in our supplemental video, that
these extended patterns emerge, as expected, dynamically over time
and remain stable throughout the remainder of all simulation runs
in correspondence with the experimentally observed stability.

Next we note that these patterns are simulated “out of the box” in a
parameter-free manner with no tuning. However, since we employ
a synchronous framework for simulation (see §8.2) in these exam-
ples, there is a clear trade-off between the accuracy of our results,
e.g., how well we capture the extended patterns, and the size of the
time-step employed, i.e., the efficiency of the method. In Table 3 we
consider these trade-offs in the simulation of the hexagonal pattern
holding all experimental constants fixed and varying only timestep
size in increments down from h = 10−3 (above which only a flat
“noisy” pattern is obtained) decrementing down to h = 10−4. At
h = 10−3 the expected hexagonal pattern emerges; however, the
wavelength is smaller than reported. As we decrease timestep the
wavelength of the generated hexagonal pattern correspondingly in-
creases until, starting at stepsizes of h = 3 × 10−4 and below,
simulations converge to both the correct pattern and wavelength.

12 Limitations and Future Work

Focusing on impact, we have not addressed a number of questions
endemic to contact, chiefly the problem of drift-free satisfaction
of sustained contact constraints. Drift-free trajectories are typi-
cally obtained with a shock propagation or position-based stabiliza-
tion technique [Guendelman et al. 2003; Erleben 2007], sacrificing
(HAM) and/or (ONE). Can one avoid this sacrifice?

While the iterative GR model terminates for all attempted exam-
ples, the termination of GR, and, to our knowledge, even that of
the Gauss-Seidel pairwise model, remains an open question. Like-
wise, appropriately extending the generalized restitution model to
multiple coefficients of restitution is an interesting problem.
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Alg. 9 obtains (HAM) by in-
terleaving an energy-preserving
impact operator and a syn-
chronous energy-preserving time
integrator. Unfortunately it is
known [Zhong and Marsden
1988] that the class of exact
energy-momentum integrators is
limited, and that with fixed-size
time steps these integrators do
not, in general, conserve all of
a system’s physical invariants.
Thus, we are also interested in
extending our (HAM) guarantees
to a wider class of simulations.



Timestep
Integration DetectionDetectionDetection ImpactImpactImpact FrictionFrictionFriction GR IterationsGR IterationsGR Iterations Overall ConstraintsOverall ConstraintsOverall Constraints

Timestep
avg avg max min avg max min avg max min avg max min avg max min

0.00100 0.1025 0.48 0.55 0.30 38.22 404.99 0.00 11.33 326.09 0.00 14 32 1 89,126 181,261 141
0.00050 0.1003 0.46 0.54 0.30 26.39 446.20 0.00 12.63 334.63 0.00 15 42 1 61,469 168,637 2
0.00045 0.1005 0.41 0.48 0.25 23.66 388.16 0.00 11.80 348.47 0.00 15 39 1 57,355 165,425 79
0.00035 0.0996 0.40 0.47 0.25 13.97 331.79 0.00 7.63 311.10 0.00 14 45 1 44,773 157,099 14
0.00030 0.1000 0.45 0.52 0.29 9.52 271.89 0.00 5.31 262.58 0.00 13 43 1 38,177 151,024 33
0.00020 0.0989 0.45 0.54 0.29 3.88 147.24 0.00 2.22 157.54 0.00 12 39 1 27,521 135,653 14
0.00010 0.0982 0.41 0.48 0.26 1.48 64.45 0.00 0.81 54.15 0.00 11 28 1 18,491 109,525 2

Table 3: Hexagonal Extended Pattern Statistics: Performance for decreasing timestep. Timings (reported above in seconds) were recorded with a single
thread on a 2.67GHz Intel Xeon 5650 for a system of 360,000 DoFs.

For example, when we apply GR-DMV (Alg. 9) to a rigid body un-
der a nonlinear potential, we observe a long-term energetic walk
(adjacent, top). Compare to the behavior of Jacobi (adjacent, bot-
tom), noting the different plot-axis scales. While Jacobi immedi-
ately blows up, GR-DMV has a relatively mild energy drift instead
of exact conservation. This is because DMV exactly preserves en-
ergy for linear, but not for nonlinear, potentials.

DMV belongs to the class of symplectic integrators [Hairer et al.
2002b], which strike a compromise: for general systems (e.g., non-
linear potentials), they approximately conserve all physical invari-
ants, including energy. The measured energy using such an inte-
grator oscillates about the true constant value, but the amplitude is
guaranteed to be bounded for an amount of time exponential in the
time step. The interaction of a symplectic integrator with (KIN)-
obeying impact response is more subtle—the resulting time inte-
grator, which can be viewed as the composition of a symplectic-
momentum and an energy-momentum integrator, is typically nei-
ther.

Can one gracefully combine impact response with symplectic inte-
gration to yield a new integrator that is still symplectic? Is there an
alternative desideratum to (KIN) that trades instantaneous energy
conservation for long-term, approximate energy conservation?

Finally, we are interested in the long-term preservation of (SYM)
under floating point arithmetic (FPA). During a simulation FPA er-
rors can accumulate and eventually break symmetry (see, e.g., the
top row, fourth image of Fig. 10). Even so, we observe that opera-
tors like GR that avoid the systematic destruction of symmetry are
better able to capture approximate symmetries over long run times.
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