
dRig: An Artist-Friendly, Object-Oriented Approach to Rig Building
Greg Smith Mark McLaughlin Andy Lin Evan Goldberg Frank Hanner

Walt Disney Animation Studios

Figure 1: Characters created with the dRig system

1 Introduction

Ever increasing complexity and performance demands on
animated characters in feature films necessitate unique rigging
workflows and toolsets. We present dRig, a novel approach to
rigging that allows for efficient reuse and extension of existing
assets, fast authoring of per-element variations, and most
importantly, accessibility of rig code to the entire department
crew. By leveraging the powerful concepts of object-oriented
programming and presenting it to the user through a well
managed, artist-friendly interface, dRig provides a framework for
sophisticated rig evolution and development.

2 Object-Oriented Approach

Unlike traditional procedural rig-building systems that automate
the creation of element templates (faces, arms, spines, etc.), dRig
is rig agnostic. Rather, it is a tool used to organize and modify the
code used to create the rigs. Applying object-oriented design to
rigging provides several benefits. These include encapsulation of
a rig and its parts into reusable pieces and extension of any of
these pieces by characters/types. These features allow the rigger
to organize, override, and extend the individual features of each
unique rig.

The rigs are defined by simple, human-readable text files that hold
small units of code and variables. These variables are organized
into hierarchical groupings that follow logical rig structures (e.g.
body|left|arm|hand|finger). This hierarchy produces unique paths
that the artist can use to easily navigate to the desired piece of the
rig build. The small size of each block (and the code within)
reduces the scope of a modification, allowing for more targeted
adjustments. To ease debugging, these groupings are represented
in dRig’s interface as a tree view and the code/variables are
represented in an expanded details panel. These views are akin to
Maya’s Outliner and Attribute Editor, which users are already
familiar with.

In addition to the tree structures, dRig has the ability to layer these
files. Each layer can mask the variables and code from the
previous layer(s) by redefining the block at a given path. This
allows for file A to inherit all of the information from file B while
still allowing for surgical edits/additions to any aspect of the
build. This inheritance allows for extensive reuse and
customization from archetypal characters (bipeds, quadrupeds,
etc.) or from other similar characters within a show.

It is significant to note that the result of “compiling” these files is
not the final asset, but rather, an aggregate composite of code and
variables that can be executed within our primary animation
package (Maya) to create the final rig. This build process is
managed through an intuitive interface that is akin to a
programming IDE. It allows artists to execute and debug their
code by setting break points, stepping through the build and
getting instant feedback on errors or warnings in their rig code.

3 Artist Accessibility

One of the most important features of dRig within the rigging
workflow at Disney is artist accessibility. Many rigging systems
require highly technical users to create and augment rig pieces or
the code that creates them. This limits quick iteration, innovation,
and ultimately crew engagement. In contrast, dRig’s simple,
readable file format, its organization of code into navigable
hierarchies of bite-sized code, and its intuitive interface allow
even new artists and novice coders to debug and augment the rig
setup.

To further open the code base to multi-user and multi-show
editing, a git repository back-end is used to track edits made to the
rig files. This allows for flexibility of individual productions to
iterate and improve in an agile fashion without disrupting other
productions that need stability in their rig builds. The shows can
use standard git management tools to merge divergences and
updates of rig definitions.

4 Evolution

By making the rigging code base more accessible, the rig builds
see constant development and evolution. Through inheritance,
organic, studio-wide standardization is realized as popular code
blocks are layered/linked and propagated across rigs.
Additionally, clear organization of code allows precise,
incremental improvements in rig functionality as well as
facilitates broader changes in base rig structures. A sophisticated
rig and build procedure can evolve with the crew, and with each
new show, to achieve new and demanding performances.

