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Abstract

Computation of bending forces on triangle meshes is required for numerous simulation and geometry processing
applications. A common quantity in many bending models is the hinge angle between two adjacent triangles. This
angle is straightforward to compute, and its gradient with respect to vertex positions (required for the forces) is
easily found in the literature. However, its Hessian, which is required for efficient numerics (e.g., implicit time
stepping, Newton-based energy minimization) is not documented in the literature. Readily available computations
of the Hessian, such as those produced by symbolic algebra systems, or by autodifferentiation codes, are expensive
to compute. We present compact, easily reproducible, closed form expressions for the Hessian. Compared to the
automatic differentiation, we measure up to 7× speedup for the evaluation of the bending forces and their gradients.
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1. Introduction

Important problems in computer simulation, anima-
tion, and geometry processing, involve the formulation
of an energy in terms of the hinge angle between pairs
of adjacent mesh triangles (see Figure 1). Examples in-
clude the

• wrinkling energy of a worn garment [3, 8],

• elastic energy of a Kirchhoff-Love thin-shell [12],

• deformation energy for example-driven deforma-
tions [9]

• Willmore energy used in mesh smoothing [17], and

• dissipative potential of viscous liquid sheets [4].

Efficient numerical treatments of the associated vari-
ational problems (e.g., via Newton’s method) or par-
tial differential equations (e.g., via implicit time step-
ping [3]) necessitate a formulation not only of the en-
ergy and its gradient, but also of the Hessian of the en-
ergy with respect to mesh position.
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In our own experience, and over years of interact-
ing with researchers and practitioners working on myr-
iad applications, we have found that these Hessians are
exceedingly tedious to derive by hand, with compact
formulations sometimes consuming weeks of manual
derivation. This process is error prone, often leading to
analytic expressions that disagree with numerical vali-
dation. The process can be suboptimal, missing oppor-
tunities for gathering like terms, thus leading to longer
source code and more expensive computation. These
liabilities are detrimental to the adoption of efficient nu-
merical methods for hinge-based energies, as evidenced
in the literature:

• Bridson et al. [8] avoided Hessians by treating
bending forces explicitly; similarly Fröhlich and
Botsch [9] avoided Hessians by using Gauss-
Newton’s method;

• Baraff and Witkin [3] introduced approximating
assumptions (e.g, inextensible cloth, undergoing
only small deformations, with flat rest shape) treat-
ing normals and edge lengths as constants;

• Bergou et al. [6], Wardetzky et al. [17] derived a
simplified Hessian formula for the special case en-
ergy sin2 (θ/2), using a technique that does not ac-
commodate the general case;
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• Grinspun et al. [12] computed the Hessian us-
ing automatic differentiation, which dominated the
computational cost of the method.

Contributions. In light of these observations, this paper
seeks to facilitate adoption, code legibility, and perfor-
mance efficiency of hinge-based bending energies.

• We present a compact and efficient formulation of
the Hessian for the general case of a hinge-based
bending energy.

• By taking advantage of several symmetries in the
expressions (some less obvious than others), we
observe that many terms can be reused when as-
sembling the Hessian for an entire mesh, further
reducing the cost of computation.

• We present the results of experiments documenting
up to 7× speedup of the formulation compared to
autodifferentiation and up to 4× speedup compared
to an existing (but unpublished) symbolic deriva-
tion.

2. Bending energy

Notation. Figure 1 presents the labels and indices for a
single hinge stencil, consisting of four vertices xi, five
edges ei and ẽi, two normals n and ñ, bend angle θ, in-
terior angles αi and α̃i, and heights hi and h̃i. Typically,
the index i takes on values 0, 1 and 2. Arithmetic on all
indices is performed modulo 3. Observe that edges (and
all related quantities) are generally labeled the same as
the opposing vertices. The tilde decoration is used to
distinguish corresponding quantities on the upper and
lower triangles T and T̃ , respectively. Throughout we
use bold letters for vectors, and triangle and edge nor-
mals are all assumed to be normalized.

Energy. For a given triangle mesh, consider an arbitrary
energy given by a summation over all the interior edges
(indexed by i), or “hinges,” of a triangle mesh,

E(x) =
∑

i

ψi(θi) , (1)

where the “bend angle” θ is the angle between the nor-
mals of the two triangles incident to the hinge, and
ψ : R → R is an application-specific transformation of
the bend angle. Drawing from the literature, examples
for ψi(θi) include

ai(θi − bi)2 Discrete shells [12]

ai(sin(θi/2)2 Discrete Willmore energy [17]

ai(cos(θi/2) − biθi) Simulation of clothing [8]

where ai and bi are application-specific scalar coeffi-
cients, which typically depend on the local geometry
of the mesh and, in physical simulations, the material
constitutive properties.

Reference [8] presented a force, not an energy; above
we have integrated the (conservative) force to obtain the
corresponding energy. By focusing on the conserva-
tive setting, we can roughly halve the computation time,
since the conservative force Jacobian is the negated en-
ergy Hessian, which is symmetric by definition.

Bending forces and Hessians. We differentiate the en-
ergy (1) with respect to vertex positions x to obtain the
bending forces and energy Hessian

f(x) = −
∑

i

∇ψi and H(x) =
∑

i

Hess(ψi) .

For one particular hinge i, dropping implied subscript
from ψi and θi, the chain rule gives

∇ψ = ψ′∇θ , (2)

Hess(ψ) = ψ′ Hess(θ) + ψ′′∇θT∇θ , (3)

using the prime to differente a univariate function with
respect to its scalar argument, e.g., ψ′ = dψ/ d θ.

Observe that the Hessian of the energy is a weighted
sum of Hess(θ) and the outer product ∇θT∇θ, thus the
same weighting function ψ′ appears in both ∇ψ and
Hess(ψ).

3. Hinge-angle gradient and Hessian

The expression for ∇θ has been previously docu-
mented in the literature in several forms equivalent to

∇x1θ =
cosα2

h1
nT +

cos α̃2

h̃1
ñT ∇x0θ = −

1
h0

nT

(4)

∇x2θ =
cosα1

h2
nT +

cos α̃1

h̃2
ñT ∇x3θ = −

1
h̃0

ñT .

By contrast, the expressions for the hinge angle Hes-
sian are not (to our knowledge) recorded in the liter-
ature. Like others, we found the derivation to be ex-
tended and error-prone, and have therefore archived a
complete derivation in an accompanying technical re-
port [15]. The final expressions for Hθ ≡ Hess(θ) are
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Figure 1: Vertices, edges, normals and angles around the edge shared by two triangles. The two rightmost schematics show the in-plane edge
normals and the associated altitudes from one edge to the opposing vertex. All of these are straightforward to compute given the edge vectors.

conveniently expressed in terms of the building blocks

S (A) = A + AT ,

ωi j = 1/(hih j) , ω̃i j = 1/(h̃ih̃ j) ,

Mi = nmT
i , M̃i = ñm̃T

i ,

Ni = Mi/‖ei‖
2 , Ñi = M̃i/‖ẽi‖

2 , (5)

Pi j = ωi j cosαiMT
j , P̃i j = ω̃i j cos α̃iM̃T

j ,

Q j = ω0 jM j , Q̃ j = ω0 jM̃ j .

The 3 × 3 subblocks, Hθ
i j, of Hθ are

Hθ
00 = − S (Q0)

Hθ
33 = −S (Q̃0)

Hθ
11 =S (P11) − N0 +S (P̃11) − Ñ0

Hθ
22 =S (P22) − N0 +S (P̃22) − Ñ0

(6)

Hθ
10 =P10 −Q1

Hθ
20 =P20 −Q2

Hθ
13 = P̃10 − Q̃1

Hθ
23 = P̃20 − Q̃2

Hθ
12 =P12 + (P21)T + N0 +P̃12 + (P̃21)T + Ñ0

Hθ
03 =0 .

︸                  ︷︷                  ︸
contribution of upper triangle

︸                  ︷︷                  ︸
contribution of lower triangle

The remaining blocks are obtained by symmetry of the
Hessian, Hθ

i j = (Hθ
ji)

T .

Exploiting symmetry. We have taken special care in
laying out the expressions above, and in assigning the

labels in Fig. 1. Observe that every contributing term
depends on quantities from the hinge’s upper triangle
T , or lower triangle T̃ , but not both. We write terms de-
pending on T on the left column, and terms depending
on T̃ on the right column. Comparing the two columns,
we observe that the two triangles contribute to the Hes-
sian symmetrically.

We will exploit this symmetry to derive a novel refac-
torization of the Hessian expressions, yielding a sim-
pler, and more efficient, implementation.

4. Refactoring the bending energy Hessian

Assembling the Hessian for an entire mesh. Recall
from (3) that the bending energy Hessian, H(x), is the
weighted sum of the hinge-angle Hessian, ψ′ Hess(θ),
and the outer product of the hinge angle gradient with it-
self, ψ′′∇θT∇θ. Therefore, it is natural to split the com-
putation of the energy Hessian into two parts, iterating
over triangles to compute

∑
ψ′i Hess(θi), and iterating

over interior edges to compute
∑
ψ′′i ∇θ

T
i ∇θi; we exam-

ine these two parts in §4.1 and §4.2, respectively.

4.1. Exploiting two levels of symmetry in ψ′ Hess(θ)

The half-hinge. As is evident from the two columns
of (6), the two triangles of a hinge contribute to the
hinge angle Hessian symmetrically. We exploit this
symmetry by thinking of each hinge as a pair of half-
hinges (see Fig. 2a).

The contributions of each half-hinge can each be
computed using only the left column of (6), making the
code compact, if care is taken to correct for the orienta-
tion of hinge edge e0.

To understand the needed correction, recall that the
left and right columns of (6) are expressed with indices
into the upper and lower triangles of Fig. 1, respectively.
Hinge edge e0 flows counterclockwise versus clockwise
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Figure 2: Refactoring the assembly: (a) Every hinge is split into two
half-hinges. (b) Each triangle associates with up to three half-hinges.
(c) The Hessian is assembled by iterating a simple template over mesh
triangles. In each iteration, the local indices of the template are
mapped to corresponding global indices, and care is taken to account
for mismatch in local/global edge orientation.

along the upper and lower triangles, respectively. This
disagreement in the assumed orientation of e0 is the only
difference in the expressions derived for the left and
right columns. In particular, if the lower half-hinge’s
contribution is computed using the expressions origi-
nally derived for the upper half-hinge, we must account
for the reversal of e0.

To understand what is affected, we can rederive (6)
with a revised Fig. 1 in which e0 is reversed. It turns out
that the reversal affects only the computation of H12,
where N0 and Ñ0 are now transposed. Since N0 + Ñ0
is symmetric, transposing both does not alter the result,
which is reassuring, since the Hessian should not de-
pend on the (arbitrary choice of) orientation of e0 in the
diagram. However, when we split the Hessian computa-
tion into a pair of half-hinges both reusing the left col-
umn of (6), this amounts to reversing the orientation in
Fig. 1 only for the lower half-hinge: the pair of half-
hinges are now computed with inconsistent versions of
Fig. 1, an error we must correct: we must transpose N0
for exactly one of the two half-hinge applications of the
left column of (6). This will be reflected below in our
final computation.

The three half-hinges of a triangle. A second level of
symmetry is uncovered by observing that each triangle
participates in up to three half-hinges (see Fig. 2b). Be-
cause these half-hinges involve the same triangle, their
contributions to the bending energy Hessian all depend
on the same set of local quantitites. It therefore becomes
natural to compute the bending energy Hessian by ex-
amining one triangle at a time.

Local triangle energy Hessian. The complete matrix∑
ψ′i Hess(θi) is assembled in the usual style of finite-

element stiffness matrix assembly, by visiting each tri-
angle and computing a local Hessian H4.

Consider the contribution of one triangle. If the tri-
angle lies in the mesh interior, it participates in three
half-hinges, but if it is incident to a boundary, it may
participate in fewer hinges. To account for the boundary
cases without specialized formulae, we introduce the in-
dicator function

σi =

{
1 edge i lies in interior ,
0 edge i lies on boundary .

We instantiate the left column of (6) thrice, with labels
permuted in correspondence to each of the three half-
hinges. Per (3), we scale each half-hinge Hessian con-
tribution by ψ′i , and sum the scaled contributions to ar-
rive at the local triangle Hessian. The use of the indica-
tor function, and the summation over three potentially
participating half-hinges, exposes the second level of
symmetry— a three-fold symmetry over the edges, ver-
tices, and indeed all labels on the triangle. This allows
for a surprisingly compact representation of the 3 × 3
subblocks of H4 as

H4i j = ωi j

(
diMT

j + d jMi

)
+

{
−Ri+1 − Ri+2 i = j ,
Ri+2

† i , j ,

where

ci = σiψ
′
i(θi) ,

di = ci−1 cosαi+1 + ci+1 cosαi−1 − ci , (7)
Ri = ciNi .

These expressions are valid for i ∈ {0, 1, 2}, j ∈ {i, i + 1}.
Remaining subblocks are determined by H4i j = (H4ji)

T .

The conditional transpose operator (†). The above ex-
pressions employ the conditional transpose operator de-
noted by a dagger: R†i transposes Ri if and only if the
orientation of mesh edge ei is counterclockwise with re-
spect to the triangle of interest. The choice of global
orientation is immaterial, so long as it is held fixed
throughout the assembly of the complete Hessian. In-
deed, the precise definition of † is also immaterial, so
long as for every interior edge, it transposes for exactly
one of the two incident triangles.

Operation count. Thus, to assemble the local Hessian
for one triangle, we first compute three cosine expres-
sions needed for di, and three outer products Mi assem-
bled in 12 linear combinations. This is more compact
than a naı̈ve computation of the Hessian for each hinge.
The Hessian for a single full hinge requires six differ-
ent outer products, 20 scaled versions of these, and 18
matrix additions. For a regular mesh there are twice as
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many edges as faces, so the total (relative) cost for the
entire mesh becomes 12 outer products, 40 scale oper-
ations and 36 additions vs. 3, 12 and 15 operations.
Assuming that the computation is compute bound, we
should therefore expect roughly a 3× speedup. How-
ever, the locality of the above computation also im-
proves cache-coherency, in practice leading to an ad-
ditional speedup.

4.2. Computing ψ′′∇θT∇θ

All but two of the subblocks in the outer product con-
tain mixed terms, i.e., terms involving data from both of
incident triangles. Therefore, the outer product does not
decompose in the way of the hinge angle Hessian; it is
more naturally computed per edge.

However, while it is conceptually most naturally
computed per edge, in practice it is still advantageous to
include it in the same loop as the hinge-angle Hessian.
We do this by assigning each edge to one of its two in-
cident triangles similar to how the conditional transpose
operator only transposes for one of the two triangles.
The advantage of using this approach is primarily that
the calls to the assembly function for the global stiffness
matrix can be consolidated. Assume that each call to the
assembly function adds one subblock of the Hessian. If
the two loops are kept separate then a total of 6F + 10E
calls to the assembly function are needed (where F de-
notes the number of faces and E denotes the number of
edges). In a regular mesh this is approximately equal to
13E. By comparison, the combined loop only requires
6F + 4E ≈ 7E calls to the assembly function (the naı̈ve
computation of the Hessian requires 10E calls to the as-
sembly function).

5. Implementation of a thin shell code testbed

Our own motivation to derive the hinge energy Hes-
sian stemmed from the implementation of an implicit
time stepper for cloth simulation. To obtain a complete
implementation for a cloth simulation there are sev-
eral additional observations which are useful. We will
present those in this section, and then use this frame-
work for the performance comparisons in the next sec-
tion.

Tan-based energy. Discrete Shells [12] employs the
hinge bending energy

ψi(θi)︸︷︷︸
Discrete Shells

= k
3‖ēi‖

2

Āi
(θi − θ̄i)2 ,

where k is a bending stiffness and Āi is the sum of the
areas of the two triangles incident to the hinge. A bar
indicates that the quantity refers to the undeformed con-
figuration.

More generally, one could consider some discrete ap-
proximation of the locally-integrated mean curvature,
ϕ(θi), and then express the hinge bending energy as

ψi(θi)︸︷︷︸
Generalized

= k ai

(
ϕ(θi) − ϕ(θ̄i)

)2
, (8)

where ai is a scaling coefficient that allows to account
for the local discrete hinge geometry. This is similar to
the formulation by Gingold et al. [11].

We found ϕ(θ) = 2 tan( θ2 ) to be useful in our ap-
plication. This expression was used by Bobenko and
Suris [7], Hoffmann [14], and Gingold et al. [11] to
estimate the sum of the principal curvatures. The tan-
based energy is convenient in practice because it leads
to monotonically increasing forces as the bend angle in-
creases. For this particular choice of ϕ(θ) the scaling
coefficient remains ai = 3‖ēi‖

2/Āi.
Physical material does not interpenetrate, thus we re-

quire

θ ∈ (−π, π) , (9)
θ̄ ∈ (−π, π) . (10)

The tan-based energy enforces (9), since the tan-based
restoring force becomes unbounded as θ → ±π; the con-
dition (10) is enforced at initialization.

We also considered whether to employ ϕ(θ− θ̄) in (8)
in place of ϕ(θ) − ϕ(θ̄). We choose the latter because
the nonpenetration condition (9) examines θ, not θ − θ̄.
Some earlier papers, perhaps less focused on enforce-
ment of nonpenetration in the elastic model, do em-
ploy ϕ(θ − θ̄) [10, 16]. For small (infinitesimal) bend-
angles all of these methods are equivalent (the curvature
approaches zero as the bend-angles approaches zero).
However, for large (finite) bend-angles the distinction
becomes important.

Bending stiffness. For actual simulations the bending
stiffness, k, must be chosen. By considering the energy
of a thin plate under small deflections[1, Sec. 6.6] we
note that it can be identified with half the flexural rigid-
ity, D. While we consider shells here rather than plates,
the model must be consistent with the plate model for a
flat rest state. Hence

k =
D
2

=
Yh3

24(1 − ν2)
(11)

where Y denotes Young’s modulus, ν is Poisson’s ratio,
and h is the thickness of the shell.
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Trigonometric functions of signed hinge angle. In or-
der to be able to determine which way a shell is bend-
ing, the bend-angle θ ∈ [−π, π) has to be treated as a
signed quantity. We use the same convention as Bridson
et al. [8], where θ has the same sign as (n1 × n2) · e0 =

det[n1,n2, e0], i.e., positive when the two normals point
away from each other.

n1
n2

θ

n1

-n2 n1+n2

n1-n2

θ/2

Figure 3: Simple construction to compute the trigonometric functions
for θ

2 based on one of the right angled triangles. Note that each of the
normal vectors have unit length.

Referring to Fig. 3, the needed trigonometric func-
tions for θ

2 are

sin
(
θ
2

)
=
‖n1 − n2‖

2
, cos

(
θ
2

)
=
‖n1 + n2‖

2
,

for θ ∈ [0; π]. For values of θ outside the specified inter-
val the usual identities for trigonometric functions can
be used. In particular this gives

tan
(
θ
2

)
= sgn(det[n1,n2, e0])

‖n1 − n2‖

‖n1 + n2‖
(12)

for θ ∈ [−π; π]. For θ = 0, the determinant becomes
zero and the sign function is undefined. However, in
this case we have n1 − n2 = 0 so as long as any finite
value is chosen for the sign function the result is correct.
It should be noted that we never have to differentiate the
right hand side of Equation (12). Instead we differenti-
ate tan(θ/2) using the chain rule. This avoids the trouble
of the non-differentiability of the sign function at zero.

Efficient computation of viscous forces. The discrete
Rayleigh analogy implementation of viscous damping
introduces an incremental dissipative potential

Ev(x) =
kd

∆t

∑
i

ai

(
ϕ(θi) − ϕ(θ̂i)

)2
,

where θ̂i is the value of θi at the end of the previous time
step and ∆t is the size of the time step, [5]. In this model,
viscosity is modeled as an elastic-type energy that binds
the end-of-step position to its start-of-step counterpart.

The parameter kd is the damping coefficient which is
conceptually similar to k in the elastic energy.

The combined elastic and viscous energy for a time
step is then given by

ψi(θ)︸︷︷︸
viscoelastic

= kai

(
ϕ(θi) − ϕ(θ̄i)

)2
+

kd

∆t
ai

(
ϕ(θi) − ϕ(θ̂i)

)2
.

and the expressions for the force and Hessian follow as
before. In particular, per (3), the expensive hinge an-
gle gradient, ∇θ, and Hessian, Hess(θ), are computed
just once (not twice), and the independent elastic and
viscous contributions appear only in the scalars ψ′ and
ψ′′. Compared to a separate evaluation of elastic and
viscous forces this provides a 2× speedup since none of
the vector or matrix computations are duplicated.

6. Method in brief

For convenience we collect all the equations into
pseudocode in Algorithm 1 and 2. The computation

Algorithm 1 Preprocessing
Input: Undeformed mesh

1: for all edges, ei do
2: Compute ϕ(θ̄i) using Equation (12).
3: Compute ai = 3‖ēi‖

2/Āi.
4: Compute k using Equation (11).
5: end for

of k may need to be done in different places depending
on whether the material parameters are spatially and/or
temporally varying. Note that on current microproces-
sors it can be advantageous in Algorithm 2 to compute
and store the inverse of the edge lengths and triangle al-
titudes. That way the subsequent number of divisions is
reduced significantly.

7. Evaluation

To illustrate the practical benefits of the results pre-
sented in the preceding sections we compare the perfor-
mance and accuracy of our implementation to two ex-
isting alternatives. In particular we compare against the
following methods:

• Automatic differentiation. Originally, Grinspun
et al. [12] proposed to evaluate the force Jacobians
using automatic differentiation. This method is
characterized by providing accurate results without
having to perform a lot of manual algebra.
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Algorithm 2 ComputeForcesAndGradients
Input: Deformed mesh

1: for all edges, ei do
2: Compute inverse edge lengths, 1/li = 1/‖ei‖.
3: Compute unit edge, êi = ei/li.
4: Compute ϕ(θi) (Eq. 12).
5: Compute ψ′ and ψ′′.
6: end for
7: for all triangles, T do
8: Compute area, A, of triangle.
9: Compute cosines, cosαi = ê j · êk.

10: Compute inverse altitudes, 1/hi = li/2A.
11: Compute edge normals, mi = êi × n.
12: Compute di, ωi j,Mi,Ni,Ri (Eqs. 5 and 7).
13: Compute contributions to the Hessian, H4i j.
14: Assemble ∇fi j = H4i j.
15: for all nonboundary CCW edges in T do
16: Compute bend gradient, ∇θ (Eq. 4).
17: Compute bending forces (Eq. 2).
18: Compute ψ′′∇θT∇θ.
19: Update ∇f = ∇f + ψ′′∇θT∇θ.
20: end for
21: end for

• Symbolic derivation. The results presented in a
number of papers, [6, 17, 10, 4], are based on
an unpublished symbolic derivation of the bending
forces and their gradients, but this derivation does
not leverage all the available symmetry.

For each of these methods our comparison is based on
the original source code provided by the authors, but
ported into our testbed for a fair comparison. The com-
parison focuses on the computation of ∇θ and Hess(θ),
so all other computations are kept the same among all
the implementations.

7.1. Test cases

We consider a number of different cloth simulations
for our evaluations. One set of these has a square piece
of cloth falling onto and draping over a (static) sphere
(see Figure 4). This simulation is run at 36 different
cloth resolutions (ranging from 121 vertices up to 6561
vertices). The goal of this test is to evaluate the behavior
of the methods in the presence of large bend angles. No
explicit damping is included in this example.

Another set of simulations shown in Figure 5 have a
horizontal “beam” of varying thickness where one end
is fully constrained while the remainder of the beam is
allowed to bend under gravity. The goal of these simula-
tions is to evaluate the behavior for a range of different

Figure 4: A piece of cloth draping over a sphere. This simulation is
run at 36 different resolutions.

Figure 5: Five different beams of varying thickness. The beams will
be referred to by number with the one in front being number 1 and the
one farthest away being number 5.

materials from soft cloth to relatively stiff thin shells.
These simulations have been damped to reach an equi-
librium relatively quickly. In practice 5 different materi-
als are considered and each one is run at three different
resolutions (366, 787 and 1372 vertices).

All benchmarks have been run on an Intel Core i7-
2640 at 2.80 GHz. Since this work is not focused on
parallelization, everything is run in a single thread for
easier comparisons. However, both the assembly of the
Hessian and the solution of the resulting linear systems
can obviously be parallelized.

7.2. Numerical accuracy

All of the methods considered for comparison should
compute identical results in exact arithmetic. In floating
point arithmetic slight differences are to be expected due
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to rouding operations of intermediate results. To con-
firm the correctness of the new method and to evaluate
its accuracy compared to the existing methods we have
computed the normwise relative error of the Hessian at
each time step of all the cloth-sphere simulations.

Let Hnew denote the Hessian of the bending energy
using the method presented in this paper, and let Hold
denote the Hessian based on one of the existing meth-
ods. The normwise relative error is then given by :

η =
‖Hnew − Hold‖

‖Hnew‖

For our computations we have used the Frobenius norm
in the above expression. The distribution of the result-
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Figure 6: The distribution of normwise relative errors when compar-
ing the proposed method to an existing symbolic derivation and an
implementation using automatic differentiation.

ing errors is shown in Figure 6. As can be seen from
this figure, the difference between the various imple-
mentations is typically on the order of 1 − 2 ulp (unit
in last place). The maximum error observed was 4.9
ulps, so the results are identical except for small differ-
ences which may affect up to the last dlog2(4.9)e = 3
bits. These numbers are all based on double precision
where one ulp is 2−53. This is all consistent with our ex-
pectation that the results should be identical except for
differences due to rounding. One thing worth noting is
that the implementation based on automatic differenti-
ation consistently has a higher error than the symbolic
derivation. However, the difference is small enough that
it is unlikely to be of practical significance.

7.3. Performance

Fundamentally, the flow of execution for the method
proposed here is not dependent on the mesh configura-
tion. We therefore expect that any performance gains

are consistent across all the examples considered. Fur-
thermore, we expect the cost to be proportional to the
number of hinges. To verify this we first consider the
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Figure 7: The cost of evaluating bending forces and force gradients as
well as assembling the associated stiffness matrix. Each of the three
methods considered exhibit close to O(n) complexity in the number of
vertices. For comparison the cost of the linear solve is also shown.
The estimated complexity for this phase is O(n1.3).

runtime for the cloth-sphere example as a function of the
number of vertices. The results are shown in Figure 7.
Each of the three implementations considered show near
perfect linear scaling. However, other parts of the cloth
simulation do not scale linearly with the number of ver-
tices. Most notably is the linear solver which in this
case is PARDISO from Intel’s MKL v. 11.0. With an
estimated complexity of O(n1.3) it is doing fairly well
from a complexity point of view, but ultimately this is
still bound to dominate any gain in the evaluation of the
bending Hessian.

In addition to the linear solve there are other costs,
like collision detection and response which depend on
the particular simulation. Still, the fraction of the to-
tal time spent on bending force evaluation and stiffness
matrix assembly can be significant as shown in Table 1.

Method Cloth-sphere Beams

Presented method 4–6% 9–12%
Existing symbolic 9–15% 17–23%
Autodifferentiation 14–22% 26–33%

Table 1: The fraction of the total simulation time which is spent on
bending force evaluation and the associated stiffness matrix assembly.
These numbers are minimums and maximums over all the examples
in each group.

To get an accurate estimate of the speedup of the Hes-
sian evaluation by itself we model the runtime cost as a
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Experiment k ln aN ln aS ln aA Speedup over symbolic Speedup over autodiff

Cloth-sphere 1.062 −5.175 −4.129 −3.632 2.85 4.68
Beam 1 1.079 −2.629 −1.829 −1.287 2.22 3.83
Beam 2 1.075 −3.305 −2.505 −1.963 2.23 3.83
Beam 3 1.079 −4.711 −3.909 −3.370 2.23 3.82
Beam 4 1.081 −6.467 −5.674 −5.134 2.21 3.79
Beam 5 1.079 −7.056 −6.261 −5.715 2.21 3.82

Table 2: The results of the parameter estimation process for ln f (x) = k ln x + ln a, where x is the number of vertices, and f (x) is the runtime. The
subscript “N” is used to denote the new method, “S” is used for the existing symbolic method, and “A” is used for the autodifferentiation method.

function of the number of vertices by f (x) = axk. We
then estimate the two parameters, a and k by linear re-
gression of the associated function g(ln x) ≡ ln f (x) =

k ln x + ln a. Based on an initial data analysis we have
observed that for each example the estimated exponent
is the same for all the methods to within the statistical
error of the estimate. Hence we have re-estimated ln a
under the assumption that the value for k is the same for
each method. Given the estimated values, the speedup
is given as the ratio between the values of a for the dif-
ferent methods. The results are shown in Table 2.

It should be noted that counter to the expectation,
there is a slight (but statistically significant) nonlinear-
ity. This nonlinearity appears to be due to the sparse
matrix data structure used for the assembly of the stiff-
ness matrix.

What is measured and modeled above is the speedup
for the combined evaluation of forces and force Jaco-
bians plus the assembly of the stiffness matrix. The
cost of the assembly operation is difficult to measure
on its own in our codebase, but by using Intel’s VTune
we have estimated the assembly cost to be roughly 49%
of the runtime for the new method, 25% for the existing
symbolic method and also 25% for the automatic differ-
entiation method. Factoring this in, the speedup for the
computation of the bending forces and their Jacobians
on their own is 1.5× the numbers shown in Table 2. This
gives a speedup between 3× and 4× relative to the ex-
isting symbolic method, which is remarkably close to
the rough estimate provided at the end of section 4.1.
Compared to the automatic differentiation method the
speedup can exceed 7×.

In addition to the comparisons above we have made
a less extensive comparison to the approximate method
employed by Baraff and Witkin [3]. This comparison
suggests that computing the exact derivatives using our
method is no more expensive than computing the ap-
proximate derivates using their method.

8. Limitations

Hinge based energies have a number of limitations
which should be kept in mind in any implementation.
These are not specific to the derivations in this paper,
but rather inherent to the use of the hinge angle.

Degeneracies. The geometry depicted in Fig. 1 could
degenerate (to first order) in two ways: edge collapses,
where the hinge edge degenerates, and altitude col-
lapses, where one of the vertices opposite the hinge
edge becomes colinear with the hinge edge.

Either degeneracy causes at least one hinge altitude
to vanish, leading to division by zero in the bend en-
ergy gradient and Hessian. In the case of an edge col-
lapse, it is possible to show that all the relevant terms
have well-defined limit values as the edge length de-
creases, so the division by zero can be handled by a
numerically-stable special case. By contrast, we do not
know of a remedy for the altitude collapse. In practice,
the membrane (stretch) energy of a shell should pre-
vent any element from degenerating, but for constitutive
models like Saint-Venant Kirchhoff which allow inver-
sion, a collapse remains possible. However, neither type
of degeneracy has occured in any of our experiments.

Indefiniteness of the hinge angle Hessian. In many sit-
uations it is desirable for a matrix to be positive defi-
nite. In particular this is a requirement for being able to
use the conjugate gradient method or a Cholesky based
direct method to solve the corresponding set of linear
equations. However, for general mesh positions, the
Hessian of the hinge angle is indefinite.

The fact that it is not positive definite is not at all
surprising. Strict convexity implies uniqueness of all
solutions, which precludes bifurcation phenomena such
as buckling [13, 2].
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